RIBlitzLibs

Red When Ltd



RIBIitzLibs

] COLLABORATORS
TITLE
RIBlitzLibs
ACTION NAME DATE SIGNATURE
WRITTEN BY Red When Ltd April 16, 2022

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME




RIBIitzLibs iii

Contents

1 RIBIlitzLibs 1
1.1 Look Out, Its The... . . . . . . . . e e e e 1
1.2 Welcome.. . . . . . o o e e 2
1.3 WhatdoIneed? . . . . . . . . e e 2
1.4 ANew Force In Software... . . . . . . . . . 2
1.5 This would not have been possible without.... . . . . . . . .. .. L 3
1.6 Lotsofloverly commands.. . . . . . . . . . . . L e e e 3
1.7 Whocan copy it? . . . . . . . L e 3
1.8 Whoyagonnacall? . . . . . . . . . . e e 4
1.9 Butfirst... . . . . o o e e e e 5
1.10 RIAmosFuncLib . . . . . . . . o e 5
1.11 RIAmosFuncLib . . . . . . . o e e 6
1.12 RIAmosFuncLib . . . . . . . o e 6
1.13 RIAmosFuncLib . . . . . . . o e 6
1.14 RIAmosFuncLib . . . . . . . 0 o e 7
1.15 RIAmosFuncLib . . . . . . . e 7
1.16 RIAmosFuncLib . . . . . . . . . e e 8
1.17 RIAmosFuncLib . . . . . . . . o e 8
1.18 RIAmosFuncLib . . . . . . . . . 8
1.19 RIAmosFuncLib . . . . . . . . . e e 8
1.20 RIAmosFuncLib . . . . . . . 0 o e 9
1.21 RIAmosFuncLib . . . . . . . . . e 9
1.22 RIAmosFuncLib . . . . . . . . e 9
1.23 RIAmosFuncLib . . . . . . . . o e 10
1.24 RIAmosFuncLib . . . . . . . . . 10
1.25 RIAmosFuncLib . . . . . . . 0 o e e 10
1.26 RIAmosFuncLib . . . . . . . e e 11
1.27 RIAmosFuncLib . . . . . . . o e 11
1.28 RIAmosFuncLib . . . . . . . . o e 11
1.29 RIAmosFuncLib . . . . . . . e 12




RIBIlitzLibs iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

RIAmosFuncLib . . . . . . . . e 12
RIAmosFuncLib . . . . . . . . e 12
RIAmosFuncLib . . . . . . . . e 13
RIAmosFuncLib . . . . . . . . e 13
RIAmosFuncLib . . . . . . . . 13
RIAmosFuncLib . . . . . . . . e e 14
RIAmosFuncLib . . . . . . . . 14
RIAmosFuncLib . . . . . . . . e 14
RIAmosFuncLib . . . . . . . . e 15
RIAmosFuncLib . . . . . . . . 15
RIAmosFuncLib . . . . . . . . 15
RIAmosFuncLib . . . . . . . . 16
RIAmosFuncLib . . . . . . . . e e 16
RIAmosFuncLib: Command Index . . . . . . . . . . . . e 16
RIAnimLib . . . . . . e 18
RIAnNIMLIb . . . . L 18
RIAnimLib . . . . . . 19
RIAnNIMLIb . . . . L 19
RIAnimLib . . . . . . . 20
RIAnimLib: Command Index . . . . . . . . . . . . . e 20
RIAppLIb . . . o 20
RIAPPLID . . . . e e e e e 21
function . . . . . . L 21
RIAPPLID . . . . e e e e e e 21
RIAppLIbD . . . o e 22
RIAPPLID . . . . e e e e 22
RIAppLIbD . . . o o 22
RIAPPLID . . . e e e e 23
RIAppLIbD . . . o 23
RIAPPLID . . . e e e e e e 24
RIAppLIb . . . o 24
RIAPPLID . . . . e e e 24
RIAppLIbD . . . o o 25
RIAPPLID . . . . e e e e 25
RIAppLib: Command Index . . . . . . . . . . . ... e 25
RICommoditiesLib . . . . . . . . . . e 26
RICommoditiesLib . . . . . . . . o e e 26
RICommoditiesLib . . . . . . . . . . e 27
RICommoditiesLib . . . . . . . . o L e e e 27




RIBIitzLibs M

1.69 RICommoditiesLib . . . . . . . . . . . 27
1.70 RICommoditiesLib . . . . . . . . . . . 28
1.71 RICommoditiesLib . . . . . . . . . . . 28
1.72 RICommoditiesLib . . . . . . . . . . e 28
1.73 RICommoditiesLib . . . . . . . . . . . e 28
1.74 RICommoditiesLib . . . . . . . . . . e 29
1.75 RICommoditiesLib . . . . . . . . . . . e 29
1.76 RICommoditiesLib . . . . . . . . . . . e 29
1.77 RICommoditiesLib . . . . . . . . . . 29
1.78 RICommoditiesLib . . . . . . . . . . . e 30
1.79 RICommoditiesLib . . . . . . . . . . . 30
1.80 RICommoditiesLib . . . . . . . . . . . 30
1.81 RICommoditiesLib . . . . . . . . . . . e 30
1.82 RICommoditiesLib . . . . . . . . . . e e 31
1.83 RICommoditiesLib . . . . . . . . . . . 31
1.84 RICommoditiesLib . . . . . . . . . . . e 31
1.85 RICommoditiesLib . . . . . . . . . . . e 31
1.86 RICommoditiesLib: Command Index . . . . . . . . . . . . e 31
1.87 RICompactDisklib . . . . . . . . . 32
1.88 RICompactDisklib . . . . . . . . e e e 33
1.89 RICompactDisklib . . . . . . . . 33
1.90 RICompactDisklib . . . . . . . . e e e e e e 33
1.91 RICompactDisklib . . . . . . . . 34
1.92 RICompactDisklib . . . . . . . o e e e e e e 34
1.93 RICompactDisklib . . . . . . ..o 34
1.94 RICompactDisklib . . . . . . . . e e e 35
1.95 RICompactDisklib . . . . . . ..o 35
1.96 RICompactDisklib . . . . . . . . . e e 35
1.97 RICompactDisklib . . . . . . . . o 36
1.98 RICompactDisklib . . . . . . . . . e e e e 36
1.99 RICompactDisklib . . . . . . .. o e 36
1.100RICompactDisklib . . . . . . . o e e e e e e e e 36
1.101RICompactDisklib . . . . . . . .o 36
1.102RICompactDisklib . . . . . . e e e e e e 37
1.103RICompactDisklib . . . . . . ..o 37
1.104RICompactDisklib . . . . . . . o e e e e e e 37
1.105RICompactDisklib . . . . . . ..o 37
1.106RICompactDisklib . . . . . . . o e e e e e e 38

1.107RICompactDisklib . . . . . . . oL e 38




RIBIlitzLibs vi

1.108RICompactDisklib . . . . . . . . 38
L.109RICompactDisklib . . . . . . . o e e e e e e 39
1.110RICompactDisklib: Command Index . . . . . . . . . . . . . ... e 39
LITIRICopperFXLib . . . . . . o o e e e e e e 40
L.112RICopperEXLib . . . . . . o o e 40
LII3RICopperFXLib . . . . . . o e e e e e e e e 41
L1T4RICopperEXLib . . . . . . o o e 41
LIISRICopperFXLib . . . . . . o o e e e e e e 42
L.116RICopperFXLib . . . . . . o o e 42
LIT7RICopperFXLib . . . . . . o o e e e e e 42
L118RICopperFXLib . . . . . . o e 43
LII9RICopperFXLib . . . . . . o o e e e e e 43
1.120RICopperEXLib . . . . . . o o e e 43
LI21RICopperFXLib . . . . . . o o e e e e e e e 43
1.122RICopperEXLib . . . . . . o e 44
1.123RICopperFXLib: Command Index . . . . . . . . . . . . . . e e e e 44
1.124RIEncryptLib . . . . . . . e 45
LA2SRIEncryptLib . . . . . o e e e e e e 45
1.126RIEncryptLib . . . . . . . e 45
LI27RIEncryptLib . . . . o o e e e e e e e 45
1.128RIEncryptLib: Command Index . . . . . . . . . . . . . . e 46
LI29RIENSLIb . . . o e 46
LI30RIENSLID . . . . 47
LI3IRIENSLID . . . o e e 48
LA32RIENSLID . . . 48
1.133RIENSLID . . . 49
LI34RIENSLIb . . . o o 49
LI35SRIENSLIb . . . e 49
LLI36RIENSLIb . . . . o o 50
LI37RIENSLID . . . e 50
LI3BRIENSLIb . . . . o o 51
L.I39RIENSLIb . . . o 51
L.I40RIENSLIb . . . . o o e 51
L.I41IRIENSLIb . . . o e e 52
L.142RIENSLID . . . . o 52
1.143RIENSLIb . . . o e 52
L.144RIENSLID . . . . o 52
L.I4SRIENSLIb . . . o e 53

L.146RIFNSLIb . . . . . o e e 53




RIBIitzLibs vii

LI47RIENSLIb . . . . o 53
[.148RIFNSLib: Command Index . . . . . . . . .. . . e 54
LI49RIFXLID . . . . o o 55
LISORIFXLIb . . . . . 56
LASIRIFXLID . . . oo o 56
LIS2RIFXLIb . . . o o 56
LAS3RIFXLID . . . o o o 57
LISARIFXLIb . . . . o 57
LASSRIFXLID . . . o o o 58
LISORIFXLIb . . . . . 58
LASTRIFXLID . . . o o o 58
LISSRIFXLIb . . . . o 59
LASORIFXLID . . . . o o 59
I.160RIFxLib: Command Index . . . . . . . . . . . . e 59
LI6IRIGEXLIb . . . . o o 60
LIOZRIGEXLID . . . . . o 60
LI63RIGEXLID . . . . o o 60
LI6ARIGEXLID . . . . o 61
LI6SRIGEXLIb . . . . o o 61
LI6ORIGEXLID . . . . o 61
LI6OTRIGEXLIb . . . . o o 62
LI6BRIGEXLIb . . . . . o 62
LI6ORIGEXLID . . . . o o o 62
LITORIGEXLib . . . . o o 62
LITIRIGEXLIb . . . . oo 63
LIT2RIGEXLIb . . . . o o 63
LI73RIGEXLIb . . . . oo e 63
LI7TARIGEXLib . . . . o o 64
1.175RIGfxLib: Command Index . . . . . . . . . . . .. e 64
1.176RILESDebugLib . . . . . . . . . 65
1.177RILESDebuglib . . . . . . . . e 65
1.178RILESDebugLib . . . . . . . . . 66
1.I79RILESDebuglib . . . . . . . . e 66
1.ISORILESDebugLib . . . . . . . . . 67
1.LISIRILESDebuglib . . . . . . . . 67
1.LIS2RILESDebugLib . . . . . . . . 67
1.183RILESDebugLib: Command Index . . . . . . . . .. . .. . ... e 68
LIBARIPackLib . . . . . . o o 68

1.185RIPackLib . . . . . . . e 69




RIBIitzLibs viii

1.186RIPackLib . . . . . . . . e 69
LIBTRIPackLib . . . . . . o o e e e 70
1.I88RIPackLib . . . . . . . . e 70
LLIBORIPackLib . . . . . o o o e e 70
1.190RIPackLib . . . . . . o e 71
1.191RIPackLib: Command Index . . . . . . . . . . . . . . e 71
1.192RIShapesLib . . . . . . . e 72
L.193RIShapesLib . . . . . . . e e e e 72
1.194RIShapesLib . . . . . . . . L e 72
L.19SRIShapesLib . . . . . . . e e e e 73
1.196RIShapesLib . . . . . . . . o e e 73
L.197RIShapesLib . . . . . . . o e e e 74
1.198RIShapesLib: Command Index . . . . . . . . . . . . . e 74
LI9ORISortLib . . . . o e e 75
L.200RISortLib . . . . . o o e 75
L20IRISortLib . . . . o e e e e 76
1.202RISortLib . . . . o o e 76
L203RISortLib . . . . e e 77
1.204RISortLib: Command Index . . . . . . . . . . . . .. e 77
1.205RIToolTypesLib . . . . . . o o e e e e e e 77
1.206RIToolTypesLib . . . . . . . . . e e 78
1.207RIToolTypesLib . . . . . . . . e e e e e e e 78
1.208RIToolTypesLib . . . . . . . . . 78
1.209RIToolTypesLib . . . . . . . . e e e e e e e 79
1.21I0RIToolTypesLib . . . . . . . . o e e e e 79
1.211RIToolTypesLib . . . . . . . . e e e e e e e e 79
1.212RIToolTypesLib . . . . . . . o e e e e 80
1.213RIToolTypesLib . . . . . . . . e e e e e e e 80
1.214RIToolTypesLib . . . . . . . L e e e 81
1.215RIToolTypesLib . . . . . . o . e e e e e e e 81
1.216RIToolTypesLib . . . . . . . . . e e 81
1.217RIToolTypesLib . . . . . . . . e e e e e e e 82
1.218RIToolTypesLib . . . . . . . . . e 82
1.219RIToolTypesLib . . . . . . . . e e e e e e e e 82
1.220RIToolTypesLib . . . . . . . . . e e 83
1.221RIToolTypesLib: Command Index . . . . . . . . . . . . . . . e e e e 83
1.222RITrackDiskLib . . . . . . . . . e e 84
1.223RITrackDiskLib . . . . . . . o o e e e 84

1.224RITrackDiskLib . . . . . . . . . o e 84




RIBIlitzLibs ¢

1.225RITrackDiskLib . . . . . . . L o e 85
1.226RITrackDiskLib . . . . . . . . o o e e 85
1.227RITrackDiskLib . . . . . . . o o o e 85
1.228RITrackDiskLib . . . . . . . . 85
1.229RITrackDiskLib . . . . . . . . 86
1.230RITrackDiskLib . . . . . . . . 86
1.231RITrackDiskLib: Command Index . . . . . . . . . . . .. e 86
1.232RIZoneJoyLib . . . . . . 87
1.233RIZoneJoyLib . . . . . . e 87
1.234RIZoneJoyLib . . . . . . e e 88
1.235RIZoneJoyLib . . . . . . o 88
1.236RIZoneJoyLib . . . . . . . e 88
1.237RIZoneJoyLib . . . . . . o e 89
1.238RIZoneJoyLib . . . . . . . e e e e 89
1.239RIZoneJoyLib . . . . . . 89
1.240RIZoneJoyLib . . . . . . . e 90
1.241RIZoneJoyLib . . . . . . . e e e 90
1.242RIZoneJoyLib . . . . . . o e 90
1.243RIZoneJoyLib . . . . . . e 91
1.244RI1ZoneJoyLib . . . . . . e 91
1.245RIZoneJoyLib . . . . . . . e e 91
1.246RIZoneJoyLib . . . . . . . 92
1.247RIZoneJoyLib . . . . . . . L e 92
1.248RIZoneJoyLib . . . . . . . e e e 93
1.249RIZoneJoyLib . . . . . . . e e e 93
1.250RIZoneJoyLib . . . . . . . 93
1.251RIZoneJoyLib: Command Index . . . . . . . . . . . . . e 94
1.252Library Index . . . . . . . o o e e e e e e e e 95

1.253Full Command List . . . . . . . . . e e e e 96




RIBIitzLibs 1/103

Chapter 1

RIBlitzLibs

1.1 Look Out, Its The...

RI BlitzLibs v4.1 CU Amiga CD-ROM Edition

COPYRIGHT 1996 Red When Excited Ltd. All Rights Reserved

Introduction
————— Whats it all about then?

_____ What you need
77777 Restrictions

————— A full list of vommands
————— All the libraries

Red When Excited
77777 What we do

————— How to get hold of us

————— Who helped?




RIBIitzLibs 2/103

1.2 Welcome..

INTRODUCTION

Thank you for taking buying CU-Amiga magazine with their fabulous CD-ROM!
Get a subscription to this fine magazine now! :)

So what the heck are 'RIBlitzLibs’?

The RI BlitzLibs are a collection of extra command libraries for use with
Blitz Basic 2 by Acid Software. They have been written by memebers of

Red When Excited Ltd - the authors were previously in a group known as
Reflective Images (hence the initials RI). We have kept the RI prefix as a
lot of people know the libraries as the RI Libs.

Work on the RI BlitzLibs began way back in March 1994. Since then, we have
continually worked on new libraries to fill the gap left by commands
missing from Blitz Basic 2. This version features many libraries containing

loads of commands - all written in 100% assembly language.
PS. V5 will be available in a few weeks time - look out on Aminet®

Aminet® is a registered trademark of Stefan Ossowskis Schatztruhe

1.3 What do | need?

REQUIREMENTS
This version of RI BlitzLibs requires an Amiga® with at least Kickstart 2.04
ROMs and 1MB RAM. In addition, you will require Blitz Basic 2 V1.7 or higher.
Many commands require higher versions of Kickstart, and most STRING
returning functions (return and pass strings) requires Blitz Basic 2 V1.9 or
higher$~1$.

Some commands also require the AGA chipset$”1$.

$71$ — The documentation for the library/command will tell you of any special
requirements.

Amiga is a registered trade mark of ESCOM AG

1.4 A New Force In Software...

Red When Excited Ltd is the new name for Leading Edge Software
(which was formally Reflective Images - hence the RI)

Leading Edge Software (LES) was formed in October 1994 by a group of
university students.




RIBIitzLibs

3/103

CONTACT US!
RWI consists of

Look out for other RWE products,

BlitzBombers AGA/CD32 (A demo is on this CD!)

BlitzBombers PC/CD-ROM

the following persons...

Nigel Hughes
Mike Richards
Steven Matty
Stephen McNamara
Steven Innell
Mark Tiffany

such as

LES Debugger v2.1
Shapez v2

LES MapEditor v2.1
SuperTED v2.1d

And In The Works

BlitzBombers3D AGA/PC

1.5 This would not have been

Thanks go to :-—

possible without....

THANKS TO...

Mark Sibly for writing Blitz Basic

All the guys and gals on the Blitz-List

Amiga Technologies GmbH for saving the Amiga® from obliteration?

Commodore for arsing it all up in the first place

Jay Miner (RIP) & Co. for making it all possible

1.6 Lots of loverly commands..

1.7 Who can copy it?

COMMAND LIST




RIBIitzLibs 4/103

Copyright

This archive is NOT Public Domain. It may ONLY appear on the April 1996
issue of CU-Amiga magazine’s CD-ROM.

All Rights are reserved

All supplied software/documention in this archive remain the Copyright and
Intellectual Property of Red When Excited Ltd.

This archive (in whole or in part) MAY NOT be distributed
without express written permission of Red When Excited Ltd

i) You MAY NOT sell printed hard-copy of supplied documentation
(in English or other known languages) without express written
permission of Red When Excited Ltd.

Disassembly or reverse engineering of this software is prohibited.

This archive may NOT appear on any form of CD-ROM medium without
written permission from Red When Excited Ltd.

Disclaimer

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDER AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

1.8 Who ya gonna call?

CONTACT
We want to hear from you! Write to
Red When Excited Ltd,

20 Thespian Street,
Aberystwyth,




RIBIitzLibs 5/103

Dyfed,
SY23 2JW.

TEL: (01970) 623057
FAX: (01727) 839320

email: enquiries@ldngedge.demon.co.uk

1.9 But first...

1.10 RIAmosFuncLib

==== RI AMOS Function Library V1.36 (C)1996 ====

Written By Steven Matty
©1996 Red When Excited Ltd

Introduction

This library was written primarily to emulate the functions that were
present in AM+S but not in Blitz Basic 2. It began life as a load of Blitz
Statements but was then converted to high speed 680x0. The library will
continually be expanded upon.

Donations are not requested, but is always welcome. You may freely
distribute this library as long as all documentation is included in an
unmodified form. *NOx distribution with commercial packages/magazines
without express written permission.

Command Index
*xkhkhkkhkkhkkkhkhkhkd NOTE **xdxkhkhkhkkhkhkhkhkhhhhr
AS FROM THIS VERSION (V1.36)
THERE WILL BE NO MORE COMMANDS
ADDED. INSTEAD, A NEW LIBRARY
CALLED RIAMOSPROFUNC WILL BE
RELEASED. THIS IS DUE TO LARGE
LIBRARY SIZE AND THE FACT THAT
BLITZ V1.90 DOES NOT INCLUDE
A LINKER.

R R i A b A i A S b e S dh R S I S S S I S b b g

* ok ok ok ok ok ok * oF
¥ %k ok ok ok ok k%

hkkkkkkhkkhkkhkkhkxkkkkkkkkkkkkkkxkxk NOTE K,k k% k% Kk %k k ok k ok k ok k% Kk % Kk &k & Kk & k% k% % k& k& k& % %
*+ VALID BANKS RANGE FROM 0-49 INCLUSIVE. DO NOT USE A VALUE GREATER THAN 49 x
* OR IT WILL BE INTERPRETED AS AN ADDRESS RATHER THAN A BANKNUMBER *

kA hhk kA hhk kA h kA hhhk bk hhk bk kA hkhk ko dhk ko ko bk ko khkhkdhk kA ko ko k ko hkd ko kA ko hkkh ko hkhkhkd kA hkhkhhkhkhkhkhkrhkrkhkxk*x*x




RIBIitzLibs 6/103

1.11 RIAmosFuncLib

Function: Reserve
Mode : Amiga/Blitz
Syntax : success=Reserve (length) | (banknumber,length[,requirements])

If only length if specified, then this functions returns the number of the
bank allocated or -1 for failure.

This will attempt to reserve <length> bytes of memory. If succesfull,
it will return -1. If unsuccessfull, 0 is returned.

The optional <requirements> parameter specifies which type of memory you
want
$1=PUBLIC
%$10=CHIP
%$100=FAST
$100000000=LOCAL
$1000000000=24BITDMA
$10000000000=KICK
%$10000000000000000=CLEAR
%$1000000000000000000=REVERSE
%$10000000000000000000000000000000=NO_EXPUNGE

OR the values together for different combinations.

EXAMPLE :
suc=Reserve (0,1024,%10) ; Reserve lk of Chip Mem returns -1
suc=Reserve (1024) ; Reserve lk of Any Mem returns 1

1.12 RIAmosFuncLib

Statement: Erase

Mode : Amiga/Blitz
Syntax : Erase banknumber

The Erase command will erase the specified memory bank.

EXAMPLE :
suc=Reserve (0,1024,%10) ; Reserve 1k of Chip Mem
Erase 0

1.13 RIAmosFuncLib

Statement: EraseAll

Mode : Amiga/Blitz
Syntax : EraseAll




RIBIitzLibs 7/1083

This command will erase ALL allocated memory banks.

EXAMPLE :
suc=Reserve (0,1024,%10) ; Reserve lk of Chip Mem
suc=Reserve (1,2048,0) ; Reserve 1k of ANY Mem
EraseAll

1.14 RIAmosFuncLib

Function: BLoad
Mode : Amiga
Syntax : success=BLoad(filename$) | (filename$,bank/addr[,length,offset,memtypel])

If only filename$ is specified, then the next available bank is allocated,
and the command returns the number of the bank for success or -1 for failure.

If bank is specified, then the file is loaded into that bank. If address
is specified then it is loaded to the address. Valid banks are 0-49.
If the bank does not exist, Blitz will reserve a bank for you.
If the bank does exist, Blitz will erase the bank from memory, and
allocate a new one.
The return result is -1 for success, or 0 for failure (not enough RAM,
file not exist). If offset is specified, then <length> bytes will be read
from the specified offset position in the file.
If memtype is specified, then the file is loaded into a memory block
of that particular memtype (see Reserve)
If you wish to leave either length/offset unspecified, simply use the
value O

EXAMPLE :
suc=BLoad ("s:startup-sequence",0) ; returns -1
suc=BLoad("c:dir",0,0,0,%10) ; Loads into CHIP
suc=BLoad ("c:1ist") ; returns 1

1.15 RIAmosFuncLib

Function: PLoad

Mode : Amiga
Syntax : success=PLoad(filename$,bank/address)

This will attempt to load the executable file to the specified address.
-1 is success, 0 is failure. The program must contain only a CODE
hunk and must be FULLY relocatable.

EXAMPLE:

suc=PLoad ("c:dir",0)




RIBIitzLibs 8/103

1.16 RIAmosFuncLib

Function: BSave

Mode : Amiga
Syntax : success=BSave (filename$,bank/address, length)

This will save <length> bytes at bank/address to the file. Return result
is -1 for success, 0 for failure. If length > bank length then the length
of the bank is saved instead. If 0 is specified, the entire bank is saved.

EXAMPLE :
suc=BLoad("c:dir",0,0,0,%10) ; Loads into CHIP
suc=BSave ("ram:temp", 0)

1.17 RIAmosFuncLib

Function: Start

Mode : Amiga/Blitz
Syntax : start_address.l=Start (banknumber.b)

This will return the start address of the specified bank. (0=no bank)

EXAMPLE :
suc=Reserve (0,1024,%10)
NPrint Start (0)
MouseWait
End

1.18 RIAmosFuncLib

Function: Length
Mode : Amiga/Blitz
Syntax : length_of_bank.l=Length (banknumber.b)

This will return the length of the specified bank in bytes. (0=No bank)

EXAMPLE :
suc=Reserve (0,1024,%10)
NPrint Length (0)
MouseWait
End

1.19 RIAmosFuncLib




RIBIitzLibs 9/103

Function: MemFree

Mode : Amiga/Blitz
Syntax : bytes.l=MemFree

This will return the total amount of Public Free RAM available to the
system.

EXAMPLE :
NPrint "Total bytes free = ",MemFree
MouseWait
End

1.20 RIAmosFuncLib

Function: NextBank

Mode : Amiga/Blitz
Syntax : bank.b=NextBank

This will return the number of the first available bank (-1 if none free).

EXAMPLE :
suc=Reserve (0,1024)
suc=Reserve (0,2048)
NPrint NextBank
MouseWait
End

1.21 RIAmosFuncLib

Statement: FillMem

Mode : Amiga/Blitz
Syntax : FillMem address.l,length.l[,value.b]

This will fill ’length’ bytes starting from the specified address with
"value’ . If ’'value’ is ommitted, 0 is filled.

EXAMPLE:
suc=Reserve (0,1024) ; Allocate some memory
FillMem Start (0),Length(0) ; Clear it
MouseWait
End

1.22 RIAmosFuncLib




RIBIitzLibs

10/103

Statement: CopyByte

Mode : Amiga/Blitz
Syntax : CopyByte source.l,dest.l,num.1l

This will copy <num> bytes from <source> to <dest>

EXAMPLE:
CopyByte Start (0),Start (l),Length(0)

1.23 RIAmosFuncLib

Statement: CopyWord

Mode : Amiga/Blitz
Syntax : CopyByte source.l,dest.l,num.1l

This will copy <num> words from <source> to <dest>

EXAMPLE :
CopyWord Start (0),Start (1), Length(0)/2

1.24 RIAmosFuncLib

Statement: CopyLong

Mode : Amiga/Blitz
Syntax : CopyByte source.l,dest.l,num.1l

This will copy <num> longwords from <source> to <dest>

EXAMPLE:
CopyLong Start (0),Start (1), Length(0)/4

1.25 RIAmosFuncLib

Function: MakeDir

Mode : Amiga
Syntax : success=MakeDir (name$)

This function attempts to create a directory called <name$>
If it is unsuccessfull, 0 is returned else -1 is returned.

EXAMPLE:
suc=MakeDir ("RAM:MYDIR")




RIBIitzLibs 11/103

1.26 RIAmosFuncLib

Function: Rename
Mode : Amiga
Syntax : success=Rename (source$,dests$)

This attempts to rename the file <source$> to <dest$>
NOTE: It is not possible to rename across devices.
-1 is returned if successfull, else 0.

EXAMPLE:
suc=Rename ("S:Startup-Sequence", "S:Startup2") ; Do not run this!

1.27 RIAmosFuncLib

Function: Timer
Mode : Amiga/Blitz
Syntax : t.l=Timer

This will return the number of 50ths of a second since startup or the
last call to ResetTimer.

EXAMPLE :
NPrint Timer
VWait
NPrint Timer
MouseWait
End

1.28 RIAmosFuncLib

Statement: ResetTimer
Mode : Amiga/Blitz
Syntax : ResetTimer

This will recent the CIA timer to O.

EXAMPLE :
NPrint Timer
ViWait
ResetTimer
NPrint Timer
MouseWait
End




RIBIitzLibs 12/103

1.29 RIAmosFuncLib

Function: Lisa
Mode : Amiga/Blitz
Syntax : chipver=Lisa

This will return the current Lisa chip version

$00 for OCS Denise
SF7 for ECS Denise
SF8 for AGA Lisa

EXAMPLE :
Select Lisa
Case 0
NPrint "You have an OCS Machine!"
Case S$F7
NPrint "You have an ECS Machine!"
Case S$F8
NPrint "You have an AGA Machine!"
Case SF9
NPrint "You have a AAA Machine?!" ; Maybe... :)
End Select
MouseWait
End

1.30 RIAmosFuncLib

Statement: Reboot

Mode : Amiga/Blitz
Syntax : Reboot

This will perform a cold reboot

EXAMPLE:
NPrint "Press mousebutton to reset.."
MouseWait
Reboot

1.31 RIAmosFuncLib

Function: FileSize

Mode : Amiga
Syntax : size.l=FileSize (filename$)

This return the length (in bytes) of the file.




RIBIitzLibs 13/103

EXAMPLE:
NPrint "Startup is ",FileSize("S:startup-sequence")," bytes long!"
MouseWait
End

1.32 RIAmosFuncLib

Function: XOR

Mode : Amiga/Blitz
Syntax : x.l1=XOR(x.1l,vy.1l)

This will perform an Exclusive-Or operation between X and Y and put the
result back into X

EXAMPLE:
x=XOR (%101, %100)

Will place %001 into X (%101 XOR %100 = %001)

1.33 RIAmosFuncLib

Function: Max/Min

Mode : Amiga/Blitz

Syntax : value=Max (first_var, second_var)
value=Min (first_var, second_var)

This will compare both values and return either the Higher of the wvalues
(Max) or the Lower (Min). This currently supports INTEGERs only.

EXAMPLE:
NPrint Max (30,50)
NPrint Min (30, 50)
MouseWait
End

1.34 RIAmosFuncLib

Function: KeyCode

Mode : Amiga/Blitz
Syntax : keycode=KeyCode

This will return the status of the keyboard in the form of a keycode.
You will need to experiment to find out the desired keycode for
a particular key.




RIBIitzLibs 14 /103

This merely peeks address $bfec0l and returns the value found.

EXAMPLE :
NPrint KeyCode
MouseWait
End

1.35 RIAmosFuncLib

Statement /Function : CludgeShapes
Mode : Amiga/Blitz
Syntax : [success]=CludgeShapes (shape#, numshapes, address)

This allows the creation of shapes through INCBIN statements. It
allocates chip memory for each shape and copies the data into this.
It does the same as LoadShapes except it grabs shapes from memory.

EXAMPLE:
suc=BLoad ("myshapes", 0)
suc=CludgeShapes (0,50, Start (0))
MouseWait
End

1.36 RIAmosFuncLib

Statement/Function : CludgeSound
Mode : Amiga/Blitz
Syntax : [success]=CludgeSound (sound#, address)

This does the same for CludgeShapes but works on only 1 sound at a time
NOTE: Looped sounds are not currently supported! The sound must be a valid
8SVX sample.

EXAMPLE:
suc=BLoad ("mysound", 0)
suc=CludgeSound (0, Start (0))
MouseWait
End

1.37 RIAmosFuncLib

Function : FindVolume
Mode : Amiga
Syntax : success=FindVolume (volumename$)




RIBIitzLibs 15/103

This will look to see if the specified volume is present, and returns
0 if it is not or -1 if it is. If the volume is not present, this function
will NOT bring up a Requester ("Please insert Volume...")
The ":" should not be included in the volumename.

This is useful for waiting for diskswaps when you have a BlitzMode display

EXAMPLE :
<Blitzmode Statements>
QAMIGA
Repeat
VWait
Until FindVolume ("DISK2")
BLITZ
<More statements>

1.38 RIAmosFuncLib

Function : DeviceName$
Mode : Amiga
Syntax : devname$=DeviceName$ (volumenames$)

This will return the device name of the specified volume or "" if the
volume was not found. The ":" may or may not be included.
EXAMPLE:

NPrint DeviceName$ ("WORK:")

1.39 RIAmosFuncLib

Function : BlitterDone

Mode : Amiga/Blitz
Syntax : status=BlitterDone

This checks to see if the Blitter has finished BLITting. -1=Yes, 0=No
EXAMPLE :

Repeat
Unti BlitterDone

1.40 RIAmosFuncLib

Statement : WaitBlitter




RIBIitzLibs

16/103

Syntax : WaitBlitter
This will halt program execution until the Blitter is ready for use.
EXAMPLE:

Bl1lit 0,0,0
WaitBlitter

1.41 RIAmosFuncLib

Statement : BlitterNasty

Mode : Amiga/Blitz
Syntax : BlitterNasty

This will set the BlitterNasty hardware register bit, which means that
the Blitter has complete priority over the CPU. This function returns

the old status.

*NOTEx In order for this to be effective, place this command in a loop
after a VWait.

1.42 RIAmosFuncLib

Function : FuncLibVersion

Mode : N/A
Syntax : N/A

This command does nothing (except return 0). Press HELP on the command
name for your current version (v1.36 or higher only)

1.43 RIAmosFuncLib: Command Index

Command index for library RIAmosFuncLib

Library Main
Number of commands: 32
BlitterDone
BlitterNasty

BLoad




RIBIitzLibs 17 /103

BSave

CludgeShapes

CludgeSound

CopyByte

CopyLong

CopyWord

DeviceName$

Erase

EraseAll

FileSize

FillMem

FindVolume

FuncLibVersion

KeyCode

Length

Lisa

MakeDir

Max/Min

MemFree

NextBank

PLoad

Reboot

Rename

Reserve

ResetTimer

Start

Timer

WaitBlitter




RIBIitzLibs 18/103

XOR

1.44 RIAnimLib

Written By Stephen McNamara
©1996 Red When Excited Ltd

Introduction

This library enables the playback of both Anim5 and Anim7 format
animations. It allows you to playback animations at any co-ordinate in a
bitmap and supports different palettes for frames of the animation. It
also allows you to playback animations from FAST ram, thus you can now play
massive animations that can only fit in FAST ram.

When playing back animations you must make sure that your display is
double-buffered. Please refer to the Blitz manual for information about
how anims can be played back properly - or look at the example program
included with this file.

There has been some extensive testing of this library. The result of this

is that all none problems with it have been fixed. Bug fixes include loop

frame anims not looping properly and anims with separate palettes per frame
now play correctly.

Command Index

1.45 RIAnimLib

Statement /Function: RIAnimInit
Modes : Amiga/Blitz
Syntax: [suc=]RIAnimInit (address,bitmap#,palette# [,xy_offset]|[,x,v])

This command attempts to take an animation held in memory (CHIP or FAST)
and identify it as a supported animation format. If it identifies it okay
it will set up the animation by unpacking frame 1 of the anim onto the
specified bitmap and copying the palette to the specified palette object.
You must ensure that the bitmap is big and deep enough to actually hold the
animation. At the moment there is no checking of the bitmap size. The
palette object you give is automatically resized to the size of the palette
in the animation.

The optional parameter allows you to play an animation at an offset into




RIBIitzLibs 19/103

a bitmap. This command has been extended so that you can specific the
optional offset into the bitmap as either a byte value, or a x,y coordinate.
Given in offset form, you should use the following formula to calculate the
value to use:

offset=(X/8)+ (Y (pixel_width/8))

where: X and Y are your co-ordinates
pixel_width is the width of your bitmap.

Offset form is kept for compatibility with older versions of this
library. You should unsure that your animation will never go off screen
when using the offset parameter(s). Incorrect placement could cause a
crash of your machine.

If used as a function, this command returns true for a successful
initialise or false for failure.

1.46 RIAnimLib

Statement /Function: RINextAnimFrame
Modes : Amiga/Blitz
Syntax: [suc=]RINextAnimFrame bitmap#

This command attempts to unpack the next frame of a previously
initialised animation onto the specified bitmap. It returns true or false
to say whether it succeeded or not.

1.47 RIAnimLib

Statement: AnimLoop
Modes : Amiga/Blitz
Syntax: AnimLoop ON|OFF

This command allows you to control the looping mode of the animation.
With animloop off, playback of an animation will stop at the last frame of
it. Any attempt to draw another frame will fail. With it on, though, the
animation will loop around.

Note: you must ensure that your animation has loop frames at the end of
it if you want to loop the animation around. The reverse of this is true
for animloop off - the animation must not have loop frames if you don’t
want it to loop around. If you select animloop off but have looping frames
in your anim then the animation will end by displaying a copy of frame 2
of the animation.




RIBIitzLibs 20/1083

1.48 RIAnimLib

Function: RIAnimFrameCount

Modes : Amiga/Blitz
Syntax: numframes=RIAnimFrameCount

This command allows you to count the number of frames in the currently
initialised animation.

1.49 RIAnimLib: Command Index

Command index for library RIAnimLib

Library Main
Number of commands: 4
AnimLoop
RIAnimFrameCount
RIAnimInit

RINextAnimFrame

1.50 RIAppLib

==== RI App Library V1.4 (C)1996 ====

Written By Steven Matty
©1996 Red When Excited Ltd

Introduction

This small library provides quick and easy to use commands for accessing
AppWindows, AppIcons and AppMenus.

An AppWindow is a window on the Workbench screen which will allow you
to drag file(s) from into it, instead of ploughing through file-requesters.

An AppMenu adds a menu item to the "Tools" menu of the Workbench. It is
normally used for when the program is ’sleeping’ and the user wishes to
wake it up. In addition, if any files are selected and the menu item

is selected these are passed to the program.

An AppIcon is just like a normal file icon on the Workbench except it




RIBIitzLibs 21/1083

allows you to drop file(s) onto it, or to double-click it to wake
up the program.

These features require at Workbench v2.0 or higher.

Command Index

1.51 RIAppLib

Function : AppEvent
Modes : Amiga
Syntax : status=AppEvent

This command checks to see whether or not an 'App’Event (e.g. File
dropped onto an AppIcon or Menu Item selected) has occurred.

This function will return 0 if no event has occurred, else
$80000 if
An AppMenu was selected
An AppIcon was double-clicked
A File Was Dragged Into An AppWindow
A File Was Dragged Onto An AppIcon

* kk ok k ok k Kk

1.52 function

* NOTE * : This function no longer returns the number of files
Kk ok ok ok kKK selected. $80000 is returned instead of -1.
See AppNumFiles() .

e.g.

Repeat
VWwait
appev.l=AppEvent ; Has something happened
Until appev
If appev=$80000
NPrint "An AppEvent Occurred! !"
EndIf

1.53 RIAppLib

Function : AddAppWindow




RIBIitzLibs 22/1083

Syntax : success=AddAppWindow (windownumber)

This command attempts to make the window specified by ’'windownumber’ to become
an AppWindow. -1 means success, 0 means failure. There is a limit of 16
AppWindows open at any one time.

1.54 RIAppLib

Function : AddAppIcon

Modes : Amiga
Syntax : success=AddAppIcon (id,text$,iconname$)

This command attempts to place an Applcon onto the Workbench desktop.

ID is a unique identification number. Text$ is text to display underneath
the AppIcon and Iconname$ is the name of the file to use the Icon imagery.
-1 means success, 0 means failure. There is a limit of 16 AppIcons.

e.g.

suc=AddAppIcon (0, "QuickFormat", "SYS:System/Format")
If suc=0 Then End

1.55 RIAppLib

Function : AddAppMenu

Modes : Amiga
Syntax : success=AddAppMenu (id, text$)

This command tries to add ’'text$’ to the Tools menu of Workbench.
ID is a unique identification number. Returns -1 for success, 0 for failure.
There is a limit of 16 AppMenu items.

e.g.

suc=AddAppMenu (0, "Wakey Wakey")
If suc=0 Then End

1.56 RIAppLib

Function : AppEventCode

Modes : Amiga
Syntax : apptype=AppEventCode

This function will return the type of App object which caused the event.
0=No Event Occurred




RIBIitzLibs

23/1083

1=AppWindow
2=AppIlcon
3=AppMenu

e.g.

Repeat

VWait

appev.l=AppEvent ; Has something happened
Until appev
Select AppEventCode

Case 1

NPrint "An AppWindow caused this!"
Case 2

NPrint "An AppIcon caused this!"
Case 3

NPrint "An AppMenu caused this!"
End Select

1.57 RIAppLib

Function : AppEventID
Modes : Amiga
Syntax : idnumber=AppEventID

This will return the object ID number which caused the AppEvent.
This ID number refers to the one which was used in
AddAppIcon/AddAppWindow/AddAppWindow.

-1 means that no AppEvent occurred.

1.58 RIAppLib

Function : NextAppFile
Modes : Amiga
Syntax : filename$=NextAppFile

This will return the full path and filename for the file/drawer/volume
which was selected when an AppEvent occurred. If a directory was selected
then a '/’ is appended to file name. If a volume (e.g. a Disk) was
selected then a ":" is appended.

An empty string means nothing was selected.

e.g.
; AppStuff initalized
Repeat

ViWait




RIBIitzLibs 24 /1083

appev.l=AppEvent
Until appev=$80000 ; repeat until some files are selected.
numfiles.l=AppNumFiles
For n=1 To numfiles
NPrint "File number "+str$(n)+" is "+NextAppFile
Next n

1.59 RIAppLib

Function : AppNumFiles
Modes : Amiga
Syntax : numfiles=AppNumFiles

This will return the number of files selected when the AppEvent occurred.

1.60 RIAppLib

Function : AppFile
Modes : Amiga
Syntax : filenameS$=AppFile (file#)

This will return the full path and filename for the file/drawer/volume
which was selected when an AppEvent occurred. The file# parameter
specifies which file to return. If a directory was selected then a '/’
is appended to file name. If a volume (e.g. a Disk) was selected then
a ":" is appended.

An empty string means nothing was selected.

e.g.
; AppStuff initalized
Repeat
ViWait
appev.l=AppEvent
Until appev=$80000 ; repeat until some files are selected.

numfiles.l=AppNumFiles
For n=1 To numfiles

NPrint "File number "+str$(n)+" is "+AppFile(n)
Next n

1.61 RIAppLib

Function: DelAppWindow




RIBIitzLibs 25/1083

Syntax : success=DelAppWindow|[ (number) ]

These commands will remove the AppWindow from the system and free up the
associated message port.

1.62 RIAppLib

Function: DelAppIcon

Modes : Amiga
Syntax : success=DelAppIcon| (id) ]

These commands will remove the AppIcon from the system and free up the
associated message port.

1.63 RIAppLib

Function: DelAppMenu

Modes : Amiga
Syntax : success=DelAppMenul (id) ]

These commands will remove the AppMenu from the system and free up the
associated message port.

1.64 RIAppLib: Command Index

Command index for library RIAppLib

Library Main
Number of commands: 13

AddAppIcon

AddAppMenu

AddAppWindow

AppEvent

AppEventCode

AppEventID

AppFile




RIBIitzLibs 26/103

AppNumFiles
DelAppIcon
DelAppMenu
DelAppWindow
NextAppFile

This function no longer returns the number of files

1.65 RICommoditiesLib

Written By Steven Matty
©1996 Red When Excited Ltd

Command Index
Introduction

This library allows the easy use of Commodities. It requires Kickstart 2 or
higher.

1.66 RICommoditiesLib

Function : MakeCommodity
Modes : Amiga
Syntax : success=MakeCommodity (name$,title$,descriptions$)

This command attempts to add your Commodity to the list of commodities.
A return value of -1 indicates success, 0 means failure. (not enough memory)

name$ refers to the name of the Commodity and it should be unique. This is
the name that appears when running the Commodity Exchange program.

title$ is the title of your program, e.g. "My Screen Blanker".
description$ is a brief description of your program.

The Commodity Exchange program will then have ’"name$’ in its list of
Commodities and when a user clicks on your commodity, it will display
the title$ and description$s.




RIBIitzLibs

27/1083

1.67 RICommoditiesLib

Function : SetHotKey

Modes : Amiga
Syntax : success=SetHotKey (hotkey#, hotkeydescriptions$)

This will add a hotkey event to your commodity so that after a hotkey
has been pressed you can find out which one.

e.g. success=SetHotKey (0, "lalt lshift a")

1.68 RICommoditiesLib

Function : HotKeyHit

Modes : Amiga
Syntax : hitkeynum=HotKeyHit

This will return the number of the hot key which has been hit since the

last ’CommodityEvent’ was called, or -1 if no such hotkey has been activated.

1.69 RICommoditiesLib

Function : CommodityEvent
Modes : Amiga
Syntax : anyevent=CommodityEvent

This looks to see if either
a) A hotkey has been pressed
b) A message from Exchange has been received

and returns -1 if such an event occurred, of 0 is nothing has yet happened.
This should be inside a Repeat-Until loop, e.g.

Repeat

ViWait

ev.l=Event

ce.l=CommodityEvent

hk.l=HotKeyHit ; This must be used after CommodityEvent
Until ev or ce or hk




RIBIitzLibs 28/103

1.70 RICommoditiesLib

Statement : SetCxStatus

Modes : Amiga
Syntax : SetCxStatus on|off

This sets the status of your Commodity to either Active (on) or Inactive
(off) - this can be seen by running the Commodities Exchange program.

1.71 RICommoditiesLib

Function : ExchangeMessage
Modes : Amiga
Syntax : messnum.l=ExchangeMessage

This looks to see if the Commodities Exchange has issued you with as message,
e.g. Hide Interface, Show Interface. It returns the message ID of the incoming
message or 0 for no message.

1.72 RICommoditiesLib

Functions: CxAppear

Modes : Amiga
This is used in conjunction with ExchangeMessage, ie

em.l=ExchangeMessage
Select em
Case CxAppear
Gosub _appear
Case CxDisAppear
Gosub _disappear
End Select

The functions merely return the ID value associated with that particular
Commodities Exchange message.

1.73 RICommoditiesLib

Functions: CxDisAppear

Modes : Amiga




RIBIitzLibs

29/1083

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.

1.74 RICommoditiesLib

Functions: CxEnable

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.

1.75 RICommoditiesLib

Functions: CxDisable

Modes : Amiga

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.

1.76 RICommoditiesLib

Functions: CxKill

Modes : Amiga

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.

1.77 RICommoditiesLib

Functions: CxChangelList

Modes : Amiga

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.




RIBIitzLibs

30/103

1.78 RICommoditiesLib

Functions: CxUnique

This is used in conjunction with ExchangeMessage, see CxAppear for more
information.

1.79 RICommoditiesLib

Functions: ExchangeAppear

Modes : Amiga
To be used in conjunction with ExchangeMessage, ie
em.l=ExchangeMessage
If em
If ExchangeAppear then Gosub _appear
If ExchangeDisAppear then Gosub _dispappear
EndIf

This is intended as an alternative way of acting upon Exchange Messages.

1.80 RICommoditiesLib

Functions: ExchangeDisAppear

Modes : Amiga

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.

1.81 RICommoditiesLib

Functions: ExchangeEnable

Modes : Amiga

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.




RIBIitzLibs 31/1083

1.82 RICommoditiesLib

Functions: ExchangeDisable

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.

1.83 RICommoditiesLib

Functions: ExchangeKill

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.

1.84 RICommoditiesLib

Functions: ExchangeChangeList

Modes : Amiga

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.

1.85 RICommoditiesLib

Functions: ExchangeUnique

Modes : Amiga

To be used in conjunction with ExchangeMessage, see ExchangeAppear for more
information on usage.

1.86 RICommoditiesLib: Command Index




RIBIitzLibs 32/1083

Command index for library RICommoditiesLib

Library Main
Number of commands: 20

CommodityEvent
CxAppear
CxChangeList
CxDisable
CxDisAppear
CxEnable
CxKill
CxUnique
ExchangeAppear
ExchangeChangeList
ExchangeDisable
ExchangeDisAppear
ExchangeEnable
ExchangeKill
ExchangeMessage
ExchangeUnique
HotKeyHit
MakeCommodity
SetCxStatus

SetHotKey

1.87 RICompactDisklib




RIBIitzLibs 33/103

Written By Stephen McNamara & Steven Matty
©1996 Red When Excited Ltd

Introduction

This library provides easy, yet powerful control of an Amiga compatible
CD-ROM player.

Command Index

1.88 RICompactDisklib

Statement/Function: OpenCD

Modes : Amiga/Blitz
Syntax: [suc=]0penCD[devicename$,unit#]

Attempts to open the cd.device for use my the library. If used as a
function it returns true or false to say whether the device was opened
successfully. You must use this command before you attempt to use any of
the other commands in this library.

You can specify a device other than cd.device by passing a device name
and unit number. eg OpenCD "scsi.device", 2

1.89 RICompactDisklib

Statement/Function: CloseCD

Modes : Amiga/Blitz
Syntax: [suc=]CloseCD

You must close the device before your program ends. Close the device
by using this command.

1.90 RICompactDisklib

Statement: CDDoor
Modes : Amiga/Blitz
Syntax: CDDoor On/Off

Controls the status of the cd tray on your cd drive. Giving a value of
On (non-zero) with this command will cause the tray to open, Off will cause
the tray to close




RIBIitzLibs 34/103

1.91 RICompactDisklib

Statement /Function: CDPlayTrack
Modes : Amiga/Blitz
Syntax: CDPlayTrack track#,numtracks

Use this command to make the cd drive play one or more audio tracks on
the currently inserted compact disc. Tracks are numbered from one but you
should make sure that track one is an audio track, since CD-ROMs store
program data on track one. The numtracks arguement allows you to play
more than one track without extra commands. When the cd player reaches the
end of the track it will move straight onto the next track automatically if
you specified to play more than one.

This command can return a value to you if desired. ~A return value of
true means that the command succeeded, else false means failure.

1.92 RICompactDisklib

Statement/Function: CDReadTOC
Modes : Amiga/Blitz
Syntax: [suc=]CDReadTOC

Read the table of contents off the current CD. This most be done before
you attempt to obtain information about tracks/try to play a track. This
command can optionally return true or false to say whether or not it
succeeded.

1.93 RICompactDisklib

Function: CDStatus
Modes : Amiga/Blitz
Syntax: status=CDStatus

Returns the status information for the device. This data includes the
current status of the cd drive, and whether or not there is a compact disc
inserted into it. The return value is a binary number, with the following
bits being of interest:

Name Bit number Meaning
CDSTSB_CLOSED 0 Drive door is closed
CDSTSB_DISK 1 A disk has been detected

CDSTSB_SPIN 2 Disk is spinning (motor is on)




RIBIitzLibs 35/103

CDSTSB_TOC 3 Table of contents read. Disk is wvalid.
CDSTSB_CDROM 4 Track 1 contains CD-ROM data

CDSTSB_PLAYING 5 Audio is playing

CDSTSB_PAUSED 6 Pause mode (pauses on play command)
CDSTSB_SEARCH 7 Search mode (Fast Forward/Fast Reverse)
CDSTSB_DIRECTION 8 Search direction (0 = Forward, 1 = Reverse)

It is possible to get more than one bit set at a time in the variable so
you should not do straight comparisions with the return value. Use the &
operator to test for different statuses, e.g.

If (CDStatus & %1) then NPrint "CD tray is closed!"

1.94 RICompactDisklib

Statement: CDStop

Modes : Amiga/Blitz
Syntax: CDStop

Causes the cd player to stop playing the current track.

1.95 RICompactDisklib

Statement/Function: CDVolume

Modes : Amiga/Blitz
Syntax: CDVolume volume, lengthoffade

Gotta find out :)

1.96 RICompactDisklib

Function: CDNumTracks
Modes : Amiga/Blitz
Syntax: num=CDNumTracks

Get the total number of tracks on the currently inserted compact disc.
Should be used only after the table of contents has been read using
CDReadTOC.




RIBIitzLibs 36/103

1.97 RICompactDisklib

Function: CDFirstTrack

Modes : Amiga/Blitz
Syntax: num=CDFirstTrack

Returns the first track on the disc available for playing using the
CDPlayTrack command.

1.98 RICompactDisklib

Function: CDLastTrack

Modes : Amiga/Blitz
Syntax: num=CDLastTrack

Returns the last track on the disc available for playing using the
CDPlayTrack command.

1.99 RICompactDisklib

Function: CDTrackLength

Modes : Amiga/Blitz
Syntax: 1=CDTrackLength (track#)

Returns the length in seconds of the selected track. The track# should
be checked to make sure that it exists on the compact disc.

1.100 RICompactDisklib

Statement: CDFlush

Modes : Amiga/Blitz
Syntax: CDFlush

Gotta find out :)

1.101 RICompactDisklib




RIBIitzLibs 37/1083

Statement: CDPause

Modes : Amiga/Blitz
Syntax: CDPause On/Off

This command is used to either make the cd player pause on the currently
playing track, or restart after being paused. If you set pause on whilst
a track is not playing, and then attempt to play a track the cd player will
go straight into pause mode.

1.102 RICompactDisklib

Statement: CDRewind

Modes : Amiga/Blitz
Syntax: CDRewind

Set the cd player into rewind mode.

1.103 RICompactDisklib

Statement: CDFastForward

Modes : Amiga/Blitz
Syntax: CDFastForward

Set the cd player into fastforward mode.

1.104 RICompactDisklib

Statement: CDNormalSpeed

Modes : Amiga/Blitz
Syntax: CDNormalSpeed

Restore the cd player to normal playing speed.

1.105 RICompactDisklib




RIBIitzLibs

38/103

Statement: CDSpeed
Modes : Amiga/Blitz
Syntax: CDSpeed speed

Set the cd player speed directly using the value in the speed parameter.

1.106 RICompactDisklib

Statement: CDUpdateInfo
Modes : Amiga/Blitz
Syntax: CDUpdateInfo

This command is used to update the current track information whilst a
compact disc is actually playing. After it has been called, the commands
CDTrackMins, CDTrackSecs and CDTrackPlaying will return information about
the current track.

1.107 RICompactDisklib

Function: CDTrackMins
Modes : Amiga/Blitz
Syntax: num=CDTrackMins[ (offset) ]

Returns the current time from start of the track for the currently
playing cd track. The optional parameter offset can take the value of 0 or
1. IF offset=1 is passed, the time returned will reflect the playing time
from the start of the compact disc, rather than from the start of the
track.

1.108 RICompactDisklib

Function: CDTrackSecs
Modes : Amiga/Blitz
Syntax: num=CDTrackSecs][ (offset) ]

Returns the current time from start of the track for the currently
playing cd track. The optional parameter offset can take the value of 0 or
1. 1IF offset=1 is passed, the time returned will reflect the playing time
from the start of the compact disc, rather than from the start of the
track.




RIBIitzLibs

39/103

1.109 RICompactDisklib

Function:

CDTrackPlaying

Modes : Amiga/Blitz
Syntax: num=CDTrackPlaying

Returns the number of the currently playing cd track.

1.110 RICompactDisklib: Command Index

Library Main

CDDoor
CDFastForward
CDFirstTrack
CDFlush
CDLastTrack
CDNormalSpeed
CDNumTracks
CDPause
CDPlayTrack
CDReadTOC
CDRewind
CDSpeed
CDStatus
CDStop
CDTrackLength
CDTrackMins
CDTrackPlaying

CDTrackSecs

Command index for library RICompactDisklib

Number of commands:

22




RIBIitzLibs 40/1083

CDhUpdateInfo
CDVolume
CloseCD

OpenCD

1.111 RICopperFXLib

Written By Stephen McNamara
©1996 Red When Excited Ltd

Command Index
Introduction

This is a library of commands that assist in setting it custom copperlists
for your blitz mode games. It interfaces with the display library and so
can only be used in conjunction with CopList objects. The commands in this
library insert copper instructions into the custom space in a Coplist
object - you must therefore have custom space in your CopList if you want
to use them.

Custom space is given to the coplist object during initialisation - it is
the last parameter of the InitCoplist command.

AGA warning: Three of the commands in this library are AGA only
(A1200/A400/CD32). They should not be used on non-AGA
machines.

1.112 RICopperFXLib

Statement: CopperReset
Modes : Amiga/Blitz
Syntax: CopperReset coplist#,startlinel[,ccoffset]

This command sets up the copper library to work on a certain coplist
object. It must be used before you can use any of the commands in this
library. coplist# is the number of the coplist you want to effect,
startline is the vertical start position to store (for the commands
DoColSplit and RedoColSplit). The optional ccoffset parameter allows you




RIBIitzLibs

41/1083

to specify an offset into the custom area of the copperlist as a start
position for the library. The ccoffset parameter is given in the form of
the number of copper instructions from the start of the custom area.

1.113 RICopperFXLib

Statement/Function: DoColSplit
Modes : Amiga/Blitz
Syntax: DoColSplit cols_adr,numlines, colour_register

This command is AGA only at the moment. What it does is produce a nice
aga fade going down the screen. The colours to fade from/to are given in
the form of 6 longwords, the address of which is pointed to by cols_adr.
The following structure could be used to store the colours:

Newtype.colourinfo
rl.1l
gl.
bl.
r2.
g2.
b2.1

End Newtype

o e e

You would then assign a variable to be of type .colourinfo, and set the
colour values in it. It would then be passed to the DoColSplit command
using the & operator to pass the address of the variable:

Deftype.colourinfo cols
cols\rl=0,0,0,255,255,255
DoColSplit &cols,256,0

The split will start at the current y counter value (set by CopperReset)
and will go on for numlines vertical lines. It will effect the colour
register supplied, which maybe any aga register. The Y counter will be
moved down to the end of the colour split after this command has finished,
meaning that you can do multiple splits one after the other easily.

1.114 RICopperFXLib

Statement/Function: RedoColSplit
Modes : Amiga/Blitz
Syntax: RedoColSplit cols_adr,numlines,cc_offset

This command must be used after the DoColSplit. What it allows you to do
is quickly update the colour information set up by the DoColSplit command
without rebuilding the whole colour split. The parameters are the same
except that cc_offset replaces the colour register parameter. For this




RIBIitzLibs

42/103

command to work, you must start it at the same custom address as the
DoColSplit was started at. This parameter is for you to pass the address
to start at too the library. An easy way to do this is to store the
current cc_offset BEFORE calling DoColSplit:

pos.w=GetCCOffset

DoColSplit &cols,256,0

7

; Change colours values in cols variable here!
7

RedoColSplit &cols,256,pos

1.115 RICopperFXLib

Statement/Function: CopperEnd
Modes : Amiga/Blitz
Syntax: CopperEnd

This command is used to tidy up the copperlist after you have finished
adding custom commands. It is necessary i1f you’re ever executing any WAIT
commands (including DoColSplit) after vertical position 255. After this
position extra code is required to make sure the CopLlist display terminated
properly. If you don’t use it after going over 255 vertically, you will
get screen corruption in your display.

1.116 RICopperFXLib

Statement/Function: CopperInfoBlock

Modes : Amiga/Blitz
Syntax: ad.l=CopperInfoBlock

Returns the address of the internal library information. This command is
primarily for debugging by me. The data held within the structure is
private, and no assumptions should be made about it by the user of this
library.

1.117 RICopperFXLib

Statement: CopperCommand

Modes : Amiga/Blitz
Syntax: CopperCommand copinsl,copins?2

This command allows you to manually insert copper instructions into the
current set coplist object. The copper instruction is given as two words




RIBIitzLibs

43/103

which are stored straight into the coplist.

1.118 RICopperFXLib

Statement: CopperMove

Modes : Amiga/Blitz
Syntax: CopperMove register,value

This command allows you to insert a move instruction into the copperlist.
The first parameter should be a hardware register address (given as an
offset from $0), the second should be a value to move into it. The value
parameter must be a word.

1.119 RICopperFXLib

Statement: CopperWait

Modes : Amiga/Blitz
Syntax: CopperWait x,y

This command allows you to insert a wait instructino into the copperlist.
The horizontal and vertical position to wait for are given by x,y. The
copper has a horizontal resolution though of 4 low resolution pixels,
thus your x coordinate will be rounded down to the nearest multiple of 4.

1.120 RICopperFXLib

Statement: CopperSkip

Modes : Amiga/Blitz
Syntax: CopperSkip x,y

This command allows you to insert a wait instructino into the copperlist.
The horizontal and vertical position to wait for are given by x,y. The
copper has a horizontal resolution though of 4 low resolution pixels,
thus your x coordinate will be rounded down to the nearest multiple of 4.

1.121 RICopperFXLib

Function: GetCCOffset

Modes : Amiga/Blitz




RIBIitzLibs 44 /103

Syntax: offset=GetCCOffset
Gets the current custom copper instruction offset. Used if you want to
keep track of how far through your custom area you are, or in conjunction

with Do/RedoColSplit. The return value is the number of instructions from
the start of the custom area.

1.122 RICopperFXLib

Statement: CopperAGACol

Modes : Amiga/Blitz
Syntax: CopperAGACol register,r,qg,b

Setting AGA colours is a pain in the arse. This instruction though allows
you to do it easily in your copperlist by doing all the extra work for you.
Just supply the colour register number to move the data into and the r,g,b

values. This command generates 4 copper instructions inside your
copperlist.

1.123 RICopperFXLib: Command Index

Command index for library RICopperFXLib

Library Main
Number of commands: 11

CopperAGACol
CopperCommand
CopperEnd
CopperInfoBlock
CopperMove
CopperReset
CopperSkip
CopperWait
DoColSplit
GetCCOffset

RedoColSplit




RIBIitzLibs 45/1083

1.124 RIEncryptLib

==== RI Encrypt Library V1.2 (C)1996 ====

Written By Stephen McNamara
©1996 Red When Excited Ltd

Command Index
Introduction

This little library provides some commands for easy, yet hard to crack
encryption.

1.125 RIEncryptLib

Statement: Encrypt

Modes : Amiga/Blitz
Syntax: Encrypt memadr, len[,wheell, wheel2, wheel3]

This will encrypt a block of memory starting at the address and running
through to addresslength-1. The optional wheel parameters allow you to
specify the start positions of the three wheels. If you leave these out
then the wheels’ start positions will be randomised.

1.126 RIEncryptLib

Function: GetWheel

Modes : Amiga/Blitz
Syntax: value=GetWheel (n)

This will tell you the position that wheel n stopped at after encrypting

a file. n can range from 1 to 3 - YOU MUST REMEMBER THESE POSITIONS IF
YOU WANT TO DECRYPT THE FILE (at the moment at least).

1.127 RIEncryptLib




RIBIitzLibs 46/103

Statement: Decrypt

Modes : Amiga/Blitz
Syntax: Decrypt memadr, len,wheell, wheel2, wheel3

Same Encrypt except that it does the opposite and the wheel positions
ARE NOT OPTIONAL. The positions should be the ones you wrote down after
encrypting the file.

>> END

1.128 RIEncryptLib: Command Index

Command index for library RIEncryptLib

Library Main
Number of commands: 3

Decrypt
Encrypt

GetWheel

1.129 RIFNSLIib

Written By Stephen McNamara
©1996 Red When Excited Ltd

Command Index
Introduction

This Blitz2 library prints proportional fonts in either Amiga or Blitz
mode. It uses my own (rather primitive) font file format, details of
which can be found at the end of this text file. Fonts can be upto 64
pixels wide and any height (although the font editor is limited to 64
pixels at the present moment). Fonts can be output in upto 256 colours
(AGA!) and in the following ways: bold, centred, underlined, right-
aligned or just standard left-aligned.

Note: a default font (PERSONAL.8) is built into this library and can be




RIBIitzLibs 47/103

used by simply using font number 0. You do not have to install this
font, it is automatically available for your use. A second point is to
make is that the library is set up with a clipping rectangle of 0,0 to
0,0. Thus you have to use either FNSClip, FNSClipOutput or FNSOutput
(with the optional clip parameter) to set the clipping rectangle before
you try to print anything.

Control Codes

The FNS library now supports an additional control code for a return
character (Ascii 10). You can now print, using this control code, multiple
lines of text in one go. If you have special print options on, for example
centering, then separate lines of text will automatically be centered
below each other.

Example usage:

a$="Hello to all you people"+chr$(10)+"out there!"
FNSPrefs %1,1
FNSPrint 0,160,100,a$

This will print "Hello to all you people" and "out there!" on separate
lines of the destination bitmap. Both lines will be centered.

The control code to changeing ink colour during line printing is still
the same (Ascii 1). See the section on FNSPrint for more
information about it.

FNS Font file format:

Header: 256 bytes.

0-3 : 'FNS.’ - file identifier - looked for by InstallFNS
4-5 : height of font (#word)

6-"7 : width of font in multiples of 16 (#word)

8-9 : underline position (offset from top of font, #word)
10-11 : size of data for each font character

[ (WIDTH/8) x height ]

32-255: byte giving widths of each character in the font.
These bytes doesn’t really hold the width, rather
they hold the value to add to the X position of the
character to get to the position to print the next
character at (!).

256-EOF:character data starting at ASCII 32 (space)

1.130 RIFNSLIib




RIBIitzLibs 48/103

Statement: FNSSetTab
Modes : Amiga/Blitz
Syntax: FNSSetTab tab_width

Use this command to set the tab spacing used when printing. The value
given should be the spacing IN pixels.

1.131 RIFNSLIib

Function: FNSLoad
Modes : Amiga/Blitz
Syntax: suc=FNSLoad (filename$, font#)

This command is used to load a font from disk and automatically install
it for use by the FNS commands. Filename$ should be the full name of
the file to load (path$+file$) and font# should be 0<= and >=15. This
command returns a value of -1 for failure or the font number the font
was installed as (see InstallFNS). A failure could either be a load
error or an installation error.

You should make sure that the file you load IS an FNS font file.

IMPORTANT NOTE: to use this command, you must have

our RIAM«+S library installed on your copy of Blitz2.

Running it without this library could, and probably will, cause a major
crash of your computer.

Also note that if you do an ERASEALL (RIAMxS library command for
erasing banks), you will DELETE your font from memory!

1.132 RIFNSLIib

Statement: FNSUnLoad
Modes : Amiga/Blitz
Syntax: FNSUnLoad font#

This command is used to remove a font installed with the FNSLoad
command. When this command runs it automatically removes the font
entry in the FNS commands and deletes the memory that the font file is
held in. There is no need to do this at the end of a program as the
RIAM*S library automatically frees up all allocated

memory.




RIBIitzLibs 49/1083

1.133 RIFNSLIib

Function: FNSSlot
Modes : Amiga/Blitz
Syntax: address.l=FNSSlot

FNSSlot returns the adres of 16 longwords. These longwords are the actual
adresses of fonts in memory. This command is really just for testing
purposes.

1.134 RIFNSLIib

Function: InstallFNS
Modes : Amiga/Blitz
Syntax: font_num.b=InstallFNS (font_num.b,address.l)

This is used to install a font so that it is available for use by

the output routines. Font_num should be a number >=0 and <=15,
address should be the address in memory of the FNS font file.

This function will check that the address given does contain a FNS
font (it will look for the header ’"FNS.’), if it cannot find the font
or something else goes wrong it will return a 0 to you, otherwise it
will return the number the font was installed as.

Note: The font number you give is automatically ANDED with $F when you
call this function, thus if you supply a number greater that 15
you could actually overwrite a previously installed font.

See: RemoveFNS

1.135 RIFNSLIib

Statement: RemoveFNS
Modes : Amiga/Blitz
Syntax: RemoveFNS font#

This command simply removes an installed font from the list of font
held internally by the FNS routines. There is no real need to remove
fonts as installing fonts takes up no memory, except of course the
actual font data. You do not need to remove FNS fonts before ending a
program.

See: InstallFNS




RIBIitzLibs 50/1083

1.136 RIFNSLIib

Statement: FNSPrint

Modes : Amiga/Blitz

Syntax: FNSPrint font_num.b,x.w,y.w,a$/string_address
[,preferences,colour]

This command prints the string a$ in an FNS font at the position X,Y.
Font_num is the number of a previously installed FNS font, the output
of this command is sent to the current FNS bitmap (see FNSOutput). You
can setting a drawing rectangle on the currently used bitmap to limit
the output of the font - see FNSClip for more info.

Instead of a string, though, you can give the address of a null
terminated string in memory. Also, you can change the colour that text
is being output in in the current string by putting the character ASCII 1
followed by a byte value from 0-255 specifying the colour to change to.

The optional parameters are for controlling how the text is output.
They automatically overide the default setting but are not permanent,
i.e. the default output style and colour are restored after the line
has been output. Use FNSInk and FNSPrefs to set the default font
output mode.

See: FNSOuput,FNSInk,FNSPrefs,FNSOrigin,FNSClip

1.137 RIFNSLIib

Statement: FNSOutput
Modes : Amiga/Blitz
Syntax: FNSOutput bitmap#[,clip_update]

This command selects a bitmap for use by the FNS routines, the bitmap
must be a previously reserved Blitz 2 bitmap object. After this
command all FNS font printing will occur on the selected bitmap. The
optional parameter allows you to update the clipping rectangle for
output at the same time as setting the output bitmap. Setting
clip_update to a non-zero value will cause the clipping area to
automatically be set to the dimensions of the selected bitmap.

This command MUST be used before you attempt to use FNSPrint.
The maximum depth of the bitmap for printing is 8 bitplanes since this
is all Blitz 2 currently supports.

See: FNSClip,FNSClipOutput




RIBIitzLibs

51/103

1.138 RIFNSLIib

Statement: FNSInk

Modes : Amiga/Blitz
Syntax: FNSInk colour#

This sets the output colour for the FNS font drawing routines. The
number range is dependant on the depth of the destination bitmap, the
max posible range, though, is limited to 0 to 255 colours. The FNS
output routines will attempt to draw in all the bitplanes of the

selected bitmap, any extra bits in the ink colour will be ignored.

See: FNSPrefs

1.139 RIFNSLIib

Statement: FNSPrefs

Modes : Amiga/Blitz
Syntax: FNSInk preferences|[,colour#]

This sets the output prefs for the FNS font drawing routines but at
the same time also sets the colour for the FNS routines (optional).
At the moment the following options are available, the bits of the
preferences byte are used to select the different options:

bit 0: Centred text
bit 1: Bold text
bit 2: Underline
bit 3: Right aligned

See: FNSInk,FNSPrint,FNSLength

1.140 RIFNSLIib

Function: FNSHeight

Modes : Amiga/Blitz
Syntax: height.w=FNSHeight (font_num)

This routine returns the height of a previously installed FNS font.
Font_num should be >=0 and <=15.

See: FNSUnderline, FNSWidth




RIBIitzLibs

52/103

1.141 RIFNSLIib

Function: FNSUnderline
Modes : Amiga/Blitz
Syntax: under_pos=FNSUnderline (font_num)

This routine returns the underline position of the selected FNS font.
Font_num should be >=0 and <=15.

See: FNSHeight, FNSWidth

1.142 RIFNSLib

Function: FNSWidth
Modes : Amiga/Blitz
Syntax: width.w=FNSWidth (font_num)

This routine returns the width in multiples of 16 of the selected FNS
font. Font_num should be >=0 and <=15.

See: FNSHeight, FNSUnderline

1.143 RIFNSLIib

Statement: FNSClip
Modes : Amiga/Blitz
Syntax: FNSClip x1,vyl,x2,y2

This command is used to limit the output of the FNSPrint command. The
co-ordinates given should describe a rectangle that is to be used to
clip the output. This rectangle can be thought of as a window on the
bitmap - no printing can occur outside of the window.
X1,Y1l are the top left corner of the clipping rectangle and X2,Y2 are
the bottom right corner. Please note that both X co-ordinates should be
multiples of 16 and that X2 should be the heightest multiple of 16 that
you do not wish output to occur at. Thus if your bitmap is 320x256 then
you would use the following to set the clipping rectangle to the full
bitmap:

FNSClip 0,0,320,256

See: FNSClipOutput, FNSOutput

1.144 RIFNSLIib




RIBIitzLibs

53/1083

Statement: FNSClipOutput

Modes : Amiga/Blitz
Syntax: FNSClipOutput

This command is used to quickly set the clipping rectangle for the FNS
commands to the full size of a bitmap.

See: FNSClip, FNSOutput

1.145 RIFNSLIib

Statement: FNSOrigin

Modes : Amiga/Blitz
Syntax: FNSOrigin [x,V]

This command is used to set an origin co-ordinate for printing output.
Whenever you use FNSPrint, the origin co-ordinates are added (as words)
to the co-ordinates you give for output. I.e. setting the origin at
100,0 and printing at co-ordinates 0,0 will cause the output to be at
100,0.

Using this command without any parameters will cause the origin to
be reset to the position 0,0.
Note: This command does not affect the use of the FNSClip command.

1.146 RIFNSLIib

Function: FNSLength

Modes : Amiga/Blitz
Syntax: a=FNSLength (font#,a$[,prefs])

This command is equivalent of the basic command a=len (a$) except that

it returns the x size, in pixels, of the string if it were to be printed

in the font font#. The optional preferences parameter allows you to

adjust the output of the string, if you specify no preferences then this

function will use the previously selected preferences to calculate the
string length. Using preferences allows you to account for things like
bold text output.

See: FNSPrefs

1.147 RIFNSLIib




RIBIitzLibs 54/103

Function: FNSVersion
Modes : Amiga/Blitz
Syntax: a.g=FNSVersion

This command allows you to test the version number of the FNS library
that your program is being compiled with. It returns a quick float
value and so you should use a quick float variable for the answer. This
doc file was written for version 1.0 of the library.

FNS Font file format:

Header: 256 bytes.

0-3 : 'FNS.’ - file identifier - looked for by InstallFNS
4-5 : height of font (#word)

6-"7 : width of font in multiples of 16 (#word)

8-9 : underline position (offset from top of font, #word)
10-11 : size of data for each font character

[ (WIDTH/8) * height ]

32-255: byte giving widths of each character in the font.
These bytes doesn’t really hold the width, rather
they hold the value to add to the X position of the
character to get to the position to print the next
character at (!).

256-EQOF :character data starting at ASCII 32 (space)

1.148 RIFNSLib: Command Index

Command index for library RIFNSLib

Library Main
Number of commands: 18

FNSClip
FNSClipOutput
FNSHeight
FNSInk
FNSLength
FNSLoad
FNSOrigin

FNSOutput




RIBIitzLibs 55/1083

FNSPrefs
FNSPrint
FNSSetTab
FNSSlot
FNSUnderline
FNSUnLoad
FNSVersion
FNSWidth
InstallFNS

RemoveFNS

1.149 RIFxLib

==== RI FX Library V1.2 (C)1996 ====

Written By Stephen McNamara (help from Steven Matty)
©1996 Red When Excited Ltd

Command Index
Introduction

Note: The library has had a lot of the commands inside it expanded so that
they work on any size bitmap. At the moment the following, though, will
only work on lorez bitmaps: ZoomX8, Derez and ZoomXY

None of the commands in this library use the blitter chip.
Also note that the maximum bitmap depth for these functions is 8.

Command list:
FadeInBitmap source#,dest#,delay[,offsetl,offset2,height]
ClearBitmap source#,delay[,offset,height]
ZoomX2 source#,dest#,add_source,add_dest,width, height
ZoomX4 source#,dest#,add_source,add_dest,width, height
ZoomX8 source#,dest#,add_source,add_dest,width, height
addval.w=ADDValue (bitmap#, x, V)
InitZoomXY source#,dest#,add_source, add_dest
ZoomXY xzoom_value,yzoom_value, height
Derez source#,dest#,add_source,add_dest,derez_value, height

This two commands have been removed from this library to reduce its size.




RIBIitzLibs

56 /103

If you need or want these commands then just mail me or Steve and we’ll
sort something out for you.

(Slow) PlanarToChunky bitmap_addr,dest_address,width, height, depth
(Slow) ChunkyToPlanar source_address,bitmap_addr,width, height, depth

1.150 RIFxLib

Statement: FadeInBitmap

Modes : Amiga/Blitz
Syntax: FadeInBitmap source#,dest#,delay[,offsetl,offset2,height]

This is used to make an any width, any height, bitmap appear on another

one in a nice way. Source# and dest# should be bitmap object numbers
and delay is the ’'slow-down’ value for the fade. This is necessary
because this routine works very fast - at full speed it looks just like

a slow screen copy. You should note that the delay is taken as being a
word, thus don’t pass 0 or you’ll actually get a delay of 65535. This
routine will adjust itself to take into account the depth of the bitmap,
WARNING: the depth of the destination bitmap should be AT LEAST as big

as the depth of the source# bitmap because the depth of the fade is taken
from the source# bitmap.

The optional parameters in this command allow you to set respectively:
the source bitmap y offset, the destination bitmap y offset and the
height of the fade (in pixels). If these parameters are left out then
the fade automatically occurs across the full size of the bitmap.

See: ClearBitmap

1.151 RIFxLib

Statement: ClearBitmap

Modes : Amiga/Blitz
Syntax: ClearBitmap source#,delay[,offset,height]

This is used to clear an any width, any height, bitmap in a very pleasant

way. The parameters are the same as for FadeInBitmap except that
only one bitmap is needed. The delay parameter i used for the same
reason as in FadeInBitmap - to slow down the effect. The optional

parameters allow you to set a y start value for the clear and the
height (in pixels) of the clear.

See: FadeInBitmap

1.152 RIFxLib




RIBIitzLibs 577103

Statement: ZoomX2

Modes : Amiga/Blitz
Syntax: ZoomX2 sourcef#,dest#,add_source,add_dest,width,height

This command does a very fast X2 zoom. It works with two bitmaps - one
source and one dest (note: these can be the same bitmap but you should
be careful that the zoom is not done over the source data). The two
parameters add_source and add_dest allow you to specify the position of
the start of the zoom, they specified as byte offsets from the top left
corner of the bitmaps (byte 0). These values can be calculated by the
following method:

add_source=(Y x BITMAP_WIDTH (in bytes) + (X / 8)

or by using the built in command ADDValue. Width and height are both
specified in pixels.

NOTE: There is no clipping on this command - be careful not to zoom off
the edges of bitmaps.

You can zoom from a bitmap to a different size bitmap BUT the

destination bitmap must be as deep as the source and big enough

to hold the zoomed data.

See: ZoomX4, ZoomX8 and ADDValue

1.153 RIFxLib

Statement: ZoomX4

Modes : Amiga/Blitz
Syntax: ZoomX4 sourcef#,dest#,add_source,add_dest,width,height

This is exactly the same as ZoomX2 except that a times 4 zoom is done
by this command.

Note: You can zoom from a bitmap to a different size bitmap BUT the
destination bitmap must be as deep as the source and big enough

to hold the zoomed data.

See: ZoomX2, ADDValue

1.154 RIFxLib

Statement: ZoomX8

Modes : Amiga/Blitz
Syntax: ZoomX8 sourcef#,dest#,add_source,add_dest,width,height

This is exactly the same as ZoomX2 except that a times 8 zoom is done
by this command




RIBIitzLibs

58/103

See: ZoomX2, ADDValue

1.155 RIFxLib

Function: ADDValue

Modes : Amiga/Blitz
Syntax: addval.w=ADDValue (bitmap#,x,Vy)

This function can be used the calculate the add_source and add_dest
values used in all the zoom commands. Just give the bitmap number, x
co-ordinate and the y co-ordinate and you’ll get an answer back that can
be used straight in the ZoomXn commands.

See: ZoomX2, ZoomX4, ZoomX8 and ZoomXY

1.156 RIFxLib

Modes : Amiga/Blitz
Syntax: InitZoomXY source#,dest#,add_source,add_dest

This command initialises the ZoomXY routine to the bitmaps you want it

to work on. You MUST use this routine before calling ZoomXY. The
parameters are the same as the first four parameter for the ZoomXn
commands — source and dest bitmaps and add_source/dest values.

See: ZoomXY

1.157 RIFxLib

Statement: ZoomXY

Modes : Amiga/Blitz
Syntax: ZoomXY xzoom_value,yzoom_value,height

This command does a zoom based on the values you give it. You should
note, though, that zoom values should be integer values (no fractional
part). The height is the height in pixels that the source data should be
zomed to. Please note that this command is different to the other zoom
commands in that the output of it is clipped to fit inside 320 pixels.

This command should only be used after InitZoomXY has been called.
This routine has an extra feature in that if you give both zoom values
as 1 then a bitmap copy is done from the source to the dest using the
offsets given and the height.

See: InitZoomXY




RIBIitzLibs

59/1083

1.158 RIFxLib

Statement: Derez

Modes : Amiga/Blitz
Syntax: Derez source#,dest#,add_source,add_dest,derez_value, height

This command is used to derez a low resolution bitmap onto another one.
The bitmaps are source# and dest#, add_source and add_dest are used to
control the start position of the derez (see ZoomX2 and ADDValue to see
how these are calculated). The derez value if obviously the amount that
each pixel will be derezed to in both the x and y directions, the height
is the height of the derez - the derez is clipped to fit inside this in
the y direction and inside 320 pixels in the x direction.

This routine has an extra feature in that if you give derez_value as 1
then a bitmap copy is done from the source to the dest using the offsets
given and the height.

1.159 RIFxLib

Statement: ReduceX2

Modes : Amiga/Blitz
Syntax: ReduceX2 sourcef#,dest#,add_source,add_dest,width, height

This command halves the given rectangle of one bitmap and pastes it onto
the destination bitmap. Width should be a multiple of 16, width and height
should describe a rectangular area that will be reduced (these values
should be in pixels).

See ZoomX2 and other commands for more information about the syntax of
this command.

1.160 RIFxLib: Command Index

Command index for library RIFxLib

Library Main
Number of commands: 10
ADDValue
ClearBitmap
Derez
FadeInBitmap

InitZoomXY




RIBIitzLibs 60/103

ReduceX?2
ZoomX2
ZoomX4
ZoomX8

ZoomXY

1.161 RIGfxLib

Written By Stephen McNamara & Steven Matty
©1996 Red When Excited

Introduction

This library contains commands for the control of palette objects inside
Blitz2. These are just simple commands that allow either interrogation of
the palette objects are modifications to the colour values contained in
them. After changing the palette with these commands, you’ll have to do
either a USE PALETTE or DISPLAYPALETTE (whichever is applicable to what
you’ re doing) to make the changes come into effect on your screen.

Command Index

1.162 RIGfxLib

Statement: PaletteInfo
Modes : Amiga/Blitz
Syntax: PaletteInfo Palette#

This command is used to specify the palette object that all palette
interrogations should look at. The majority of the commands use this
palette object as the source for their data, e.g. PalRed(l) will look at
the red value of colour 1 of the palette last used in a PalettelInfo
command.

1.163 RIGfxLib




RIBIitzLibs

61/103

Function: PalRed
Modes : Amiga/Blitz
Syntax: r.w=PalRed (Colour#)

This command is used to get the red value of colour number Colour#. You
should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 15

1.164 RIGfxLib

Function: PalGreen
Modes : Amiga/Blitz
Syntax: g.w=PalGreen (Colour#)

This command is used to get the green value of colour number Colour#.
You should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 15

1.165 RIGfxLib

Function: PalBlue
Modes : Amiga/Blitz
Syntax: b.w=PalBlue (Colour#)

This command is used to get the blue value of colour number Colour#. You
should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 15

1.166 RIGfxLib

Function: AGAPalRed
Modes : Amiga/Blitz
Syntax: r.w=AGAPalRed (Colour#)

This command is used to get the red value of colour number Colour#. You
should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 255, this number of shades, though,
can only be displayed on an AGA machine.




RIBIitzLibs 62 /103

1.167 RIGfxLib

Function: AGAPalGreen
Modes : Amiga/Blitz
Syntax: g.w=AGAPalGreen (Colour#)

This command is used to get the green value of colour number Colour#.
You should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 255, this number of shades, though,
can only be displayed on an AGA machine.

1.168 RIGfxLib

Function: AGAPalBlue
Modes : Amiga/Blitz
Syntax: b.w=AGAPalBlue (Colour#)

This command is used to get the blue value of colour number Colour#. You
should use the PaletteInfo command to specify what palette this command
takes its information from.

The value returned will be from 0 to 255, this number of shades, though,
can only be displayed on an AGA machine.

1.169 RIGfxLib

Statement: PalAdjust
Modes : Amiga/Blitz
Syntax: PalAdjust dest_palette#,ration.qgl,start_col,end_col]

This command is used to multiple all the colours, or a range of colours,
in a palette object, by a ratio. The dest_palette# arguement is used to
give a destination for the adjusted colour information. This destination
should be a pre-reserved palette and should be AT LEAST as big and the
source palette. The source palette is taken as being the palette last used
in the PaletteInfo command.

The ratio should be given as either a quick value or a float and should
be below one for a fade or above to lighten a palette. If you give a ratio
of 1 then a palette copy will occur.

The optional start and end parameters let you specify the range of
colours to adjust. Only this range of colours, though, will be adjusted
and stored in the destination palette.

1.170 RIGfxLib




RIBIitzLibs 63 /103

Statement: FillPalette
Modes : Amiga/Blitz
Syntax: FillPalette palette#,r,g,bl[start_col,end_col]

This command lets you fill a given palette object with specific r,qg,b
values. The values given should be between 0 to and 15. Optionally, you
can give start and end colour numbers to set a range for the fill. You
should be careful, though, because when you specify a range, no checking is
done (at the moment) to make sure that you don’t exceed the colour limit of
the palette.

You should note that this command does not work on the palette last
PaletteInfo’ed.

1.171 RIGfxLib

Statement: AGAFillPalette
Modes : Amiga/Blitz
Syntax: AGAFillPalette palette#,r,g,blstart_col,end_col]

This command is identical to FillPalette except that it lets you specify
AGA shade values for the r,g,b parameters.
See FillPalette for more information.

1.172 RIGfxLib

Statement/Function: CopyColour
Modes : Amiga/Blitz
Syntax: [suc=]CopyColour source_pal#,dest_pal#,source_col#,dest_col#

This will attempt to copy a colour entry in a palette to another entry,
which can be in a separate palette or the same. If used as a function,
then it will return -1 for success, or 0 for failure. The command fails if
either of the colour numbers is out of the range of the relevant palette.

1.173 RIGfxLib

Statement/Function: SaveCMAP

Modes : Amiga
Syntax: [suc=]SaveCMAP palette#,filename$

This command will save out the given palette as an IFF file, with just a
BMHD and CMAP. This file can be loaded into graphics packages like DPaint.




RIBIitzLibs 64 /103

It will return -1 for success in saving, or 0 for failure.

1.174 RIGfxLib

Statement: CPUCls

Modes : Amiga/Blitz
Syntax: CPUCls bitmap#

Does a clear of a bitmap using the CPU. This command, unlike the Acid

command Cls, only clears to colour 0. On accerelated machines, though, it
out performs the Cls instruction.

>> END

1.175 RIGfxLib: Command Index

Command index for library RIGfxLib

Library Main
Number of commands: 13

AGAFillPalette
AGAPalBlue
AGAPalGreen
AGAPalRed
CopyColour
CPUCls
FillPalette
PalAdjust
PalBlue
PalettelInfo
PalGreen
PalRed

SaveCMAP




RIBIitzLibs 65/103

1.176 RILESDebugLib

==== RI Debug Library V1.21 (C)1996 ====

Written By Stephen McNamara
©1996 Red When Excited Ltd

Introduction

This library is an extension for the Blitz Basic runtime error debugger by
Leading Edge Software (our old name!) .

It allows your program to give the debugger a set of simple instructions
that are invaluable whilst debugging a program. They can only be used in
conjunction with version 1.9+ of Blitz Basic 2, and the updated Acid
library debug.obj.

You should note that these commands can *ONLYx be used in amiga mode since
they require the debugger to immediately respond to them. When in Blitz
mode, multitasking is disabled so the debugger is unable to react to the
commands. When compiling, Blitz will tell you if you try and use the
commands in Blitz mode.

Additional commands in this library require the related update of the
debugger. Currently this libraries version number is 1.21, you should have
a debugger version greater than or equal to this number.

Command Index
A note about variable tracing

Variable tracing is only performed whilst the debugger is either single
stepping a blitz program, or TRACING a program. When a program is running
on its own, no update of any windows in the debugger is performed.

1.177 RILESDebugLib

Statement : AddVarTrace

Modes : Amiga
Syntax : AddVarTrace var,variable$,display_mode
This command adds a variable trace to the debuggers list of traces. The

parameter ’‘var’ is the actual variable to add to the list, variable$ is the
name which will be printed in the variable window in the debugger (usually




RIBIitzLibs 66 /103

the same as the variable name) and display_mode is the prefered output mode
for the variables value.

The string variable$ will be displayed inside the variable trace window.
This will normally be the name of your variable, but on occasion you might
want some extra info with the name. In these cases, you can make the
variable$ anything you like, for example "a (counter)" means that we’re
tracing variable a but we want to remember that is being used as a counter
inside the program.

The output mode can take the following values, depending of course on the
type of variable:

Bytes/Words/Longs: O=nocare (default output will be selected)
l=decimal
2=hexadecimal
3=binary

Quicks/Floats: O=nocare
l=decimal

Strings: O=nocare (defaults to no length/maxlen data)
l1=no length/maxlen data
2=length/maxlen data displayed

The command will automatically work out the "type’ of your variable and
ensure that the proper output mode is selected.

You should note that you can add the same variable more than once if you
like. This will be useful if you want to display a variables value in more
than output mode. For example, you could display the byte sized variable
MYVAR in both decimal and hexadecimal by ’"adding’ it twice.

1.178 RILESDebugLib

Statement : DelVarTrace
Modes : Amiga
Syntax : DelVarTrace variable$

This command instructs the debugger to remove a variable, identified by the
string variable$, from its trace list. The debugger will look for the name
variable$ and delete %ALLx occurences of this name from the list. If you
added the variable trace with a different name from the actual name of the
variable, you must ensure that the variable$ matchs that which you used to
add the wvariable.

1.179 RILESDebugLib




RIBIitzLibs 67 /103

Statement : VarTraceWindow
Modes : Amiga
Syntax : VarTraceWindow

This command instructs the debugger to open its variable trace window.
This can save the bother of going to the debugger separately and opening
the window yourself.

1.180 RILESDebugLib

Statement : DisAsmWindow
Modes : Amiga
Syntax : DisAsmWindow

This command instructs the debugger to open its disassembly window. The
disassembly window will open at the address of the command following
DisAsmWindow. This can be helpful in cases like statements/functions that
are totally assembly since you cannot evaluate the address of a label thats
inside a statement/function.

1.181 RILESDebugLib

Statement : CopperTrace

Modes : Amiga

Syntax : CopperTrace address|[,offset]

This command instructs the debugger to open its copper window. If the
offset parameter is passed with the command, the library assumes that
"address’ points to a coplist object (e.g. address=addr coplist (0)), it
then adds the offset and takes the longword at that address as the start
position for the window. Thus, if you wanted to open the copper window

right at the start of coplist 0 you’d do:
CopperTrace Addr Coplist(0),4

See the coplist object in the debugger for more information about offsets.

1.182 RILESDebugLib

Statement : ProcControl

Modes : Amiga
Syntax : ProcControl On/Off




RIBIitzLibs 68 /103

This command allows you to switch the debuggers procedure control on or
off. If on, the debugger will not step/trace inside of statements and
functions. 1Instead it will execute them as single commands.

This command is actually the same as toggling the gadget on the debugger
screen.

1.183 RILESDebugLib: Command Index

Command index for library RILESDebugLib

Library Main
Number of commands: 6
AddvarTrace
CopperTrace
DelVarTrace
DisAsmWindow
ProcControl

VarTraceWindow

1.184 RIPackLib

Written By Stephen McNamara & Steven Matty
©1996 Red When Excited Ltd

Introduction

This library contains commands for the unpacking of ILBM’s (IFF pictures)
and the grabbing of their palettes (CMAP chunks). Nearly all the commands
in this library can be used as either STATEMENTS or FUNCTIONS. Usage is
identical in both cases but if used as a function then the command will
return:

FALSE for failure

TRUE for success

Command Index




RIBIitzLibs 69/103

1.185 RIPackLib

Statement/Function: UnpackIFF

Modes : Amiga/Blitz

Syntax: UnpackIFF address.l,bitmap#[, lines,offset]
suc=UnpackIFF (address.l,bitmap#[,lines,offset])

This command is used to unpack an IFF picture file from memory onto a
bitmap. Address.l should point to the START of the iff file header in
memory (either CHIP or FAST mem can be used), bitmap should be the number
of a previously initialised bitmap. The optional lines parameter allows
you to specify the number of lines to unpack from the IFF file.

This command checks the size of the bitmap against the size of the IFF
before it unpacks the IFF onto it. Checks are made for width, height and
depth of the bitmap and the IFF and the following is done:

(size=WIDTH, HEIGHT and DEPTH)

BITMAP ’'size’ < IFF ’size’ : unpack aborted
BITMAP ’size’ = IFF ’'size’ : pic is unpacked
BITMAP ’size’ > IFF ’'size’ : pic is unpacked

Extra aborts can be caused by:
- not using a previously installed bitmap
— given the optional lines parameter as 0 or less
- not giving ADDRESS.l as a pointer to a valid IFF ILBM
header

When using the optional parameters, you should note that if you try to
unpack more lines than the IFF has, the unpack routine will automatically
stop at the last line of the IFF. It will not reject the UnpackIFF
command. Also note that the offset is a byte offset from the start of the
bitplanes. You can use the AddValue command to calculate this wvalue.

NOTE: you should save your IFF pictures with the STENCIL OFF because at
the moment this routine does not check to see if STENCIL data is present in
the IFF file.

1.186 RIPackLib

Statement/Function: ILBMPalette

Modes : Amiga/Blitz

Syntax: ILBMPalette address.l,palette#
suc=ILBMPalette (address.l,palette#)

This command is used to grab the palette from a IFF picture file held in
memory (CHIP or FAST mem). Address.l should be given as the address of
either an IFF file in memory or a CMAP chunk in memory. When you use the
SAVE PALETTE command from inside an art program (e.g. DPaint) or from
inside Blitz2, the program saves out a CMAP chunk which gives details
about the palette. The CMAP chunk is also saved with IFF picture files to
give the palette of the picture.




RIBIitzLibs

70/103

This command will look at the address you gave and try and find a CMAP
chunk from the address given to address+5120. If it finds a chunk it will
grab the palette into the given palette object. If the palette object
already contains palette information then this information is deleted.
This routine looks in the CMAP chunk and reserves the palette object to
have the same number of colour entries.

This command will fail if it doesn’t find a CMAP chunk.

1.187 RIPackLib

Statement: ILBMGrab

Modes : Amiga/Blitz
Syntax: ILBMGrab address.l,bitmap#,palette#

This command lets you grab both the palette and the graphics from an IFF
picture file with just one command. It returns to success parameter to

say whether or not it succeeded in grabbing the data, so if you need to know

if the grabbing was successful you’ll have to use the separate commands
for grabbing palettes and graphics.

NOTE: this command essentially just calls both UnpackIFF and ILBMPalette
so everything said about these commands is relevent for ILBMGrab.

1.188 RIPackLib

Statment/Function: LoadIFF

Modes : Amiga

Syntax: LoadIFF filename$,bitmap#[,palette#]
suc=LoadIFF (filename$,bitmap#[,palette#])

This command is a direct replacement for Blitz2’s LoadBitmap. It is a
lot faster than Blitz’s command since it loads the file into memory and
then unpacks it from there. Thus you need to ensure that you have enough
free memory to load the IFF into before trying to use this command.

This command is also more stable than Blitz’s since it checks for the
existence of the file before trying to load it in.

The optional parameter allows you to load in the palette of the IFF
picture. Refer to UnpackIFF and ILBMPalette for more information about
unpacking the graphics and grabbing the palettes.

IMPORTANT NOTE: to use this command you must have our FUNC library

installed in your copy of Blitz2. Use of this command without this library
will probably lead to a bad crash of your Amiga!

1.189 RIPackLib




RIBIitzLibs 71/103

Statement/Function: Delce

Modes : Amiga

Syntax: DelIce source_address,dest_address
suc=Delce (source_address,dest_address)

This is a command from my (Stephen McNamara) past.
It is used to unpack data files packed by my favourite Atari ST packer -
PACK ICE v2.40. 1I’'ve put it into Blitz because still have loads of files

that I’ve packed with it. To use it, source_address should (obviously)
contain the address of the data, dest_address should be where to unpack the
data to. In the function form, this command returns either 0 for unpack

failed or -1 for success.
Note: The size of the data unpacked is the long word at source_address+8
(I think, or is it 47?) if anybody is interested......

1.190 RIPackLib

Function: ChunkHeader

Modes : Amiga
Syntax: val.l=ChunkHeader (AS)

This command was put in by me (Stephen McNamara) before I realised Blitz
already had a command that does exactly the same. I’ve left it in just
because I want to. It is useful when looking through IFF files for chunks
(e.g. ILBM, CMAP, etc.) as it gives you a longword value to look for in
memory to find the chunk. The string should be a four character string
(e.g. CMAP), you’ll be returned the longword value of the string.

This command does the job of the following bit of Blitz2 code:

as$="CMAP"
val.l=Peek.1l (&a$)

>> END

1.191 RIPackLib: Command Index

Command index for library RIPackLib

Library Main
Number of commands: 6

ChunkHeader

Delce




RIBIitzLibs 72/103

ILBMGrab
ILBMPalette
LoadIFF

UnpackIFF

1.192 RIShapesLib

Written By Steven Matty
And Nigel Hughes.
©1996 Red When Excited Ltd

Introduction

A library providing miscellaneous extra commands for use with the native
Blitz shape object. Features a new file format which supports compression
and palette encoding.

Command Index

1.193 RIShapesLib

Statement/Function : CludgeShapes
Modes : Amiga/Blitz
Syntax : [success]=CludgeShapes (shape#, numshapes, address)

This allows the creation of shapes through INCBIN statements. It
allocates chip memory for each shape and copies the data into this.
It does the same as LoadShapes except it grabs shapes from memory.

EXAMPLE :
suc=BLoad ("myshapes", 0)
suc=CludgeShapes (0,50, Start (0))
MouseWait
End

1.194 RIShapesLib




RIBIitzLibs

73/103

Statement: LESaveShapes

Modes: Amiga
Syntax: LESaveShapes shapenum#, shapenum#, filename$[,palette#]

This saves shapes and a palette in an IFF type file (not an picture). The
palette can be saved along with the shape file. If no palette is passed or the
passed palette is empty, no palette data will be saved.

1.195 RIShapesLib

Statement: LELoadShapes

Modes: Amiga
Syntax: LELoadShapes shapenum#, [shapenum#,]filename$|[,palette#]

This attempt to load shapes from an LEShapes file, if there is a palette
saved in the shape file this will be loaded into the specified palette. You can
miss out an upper shape limit or a palette number or both!

PITTWARNING! ! !

Due to a limitation of the Blitz library system you cannot use the following
form of the command:

LELoadShapes 0, "shapesfile", 0
You will get a "Can’t convert types error". To get around this simply do:

LELoadShapes 0,Max Shape, "shapesfile", 0

1.196 RIShapesLib

Statement: LECludgeShapes

Modes: Amiga/Blitz
Syntax: LECludgeShapes shape#, shape#,address,palette#

This command decodes a shape file (that may have a palette) saved by
LESaveShapes. It can cope with compresses or uncompressed data, and conforms
with Acids standards for indicating that a shape has been cludged.

If you wish to decompress as many shapes as are in the shapes file you may
do:

LECludgeShapes shape#,Maximum Shapes-1,address,palette#
This will decode all the shapes in the file with NO OVERRUN like acids library.

! IMPORTANT !




RIBIitzLibs 74 /103

There are some considerations with where in memory you want to place you
LEShapes file to be Cludged. If you’re shapes file is:

1) Cached to CHIP MEM and
2) UNCOMPRESSED

Then Cludge shapes will not create a second copy of the shapes data. There is no
point caching a compressed LEShapes file to Chip MEM. I would recommed caching
compressed files to fast mem.

1.197 RIShapesLib

Statement: LECompressShapes
Modes: Amiga
Syntax: LECompressShapes Boolean

By default LESaveShapes compresses shapes in a shape file. The compressor is
quite intelligent in that if the compressed shape is larger (oxymoron any one?)
than the orginal (this can happen, honest) it saves the full data from the old
shape.

If you wish to turn shape compression on or off, call LECompressShapes with
the correct parameter.

Below is a small table comparing the same shape files stored in 3 different
ways. For very small shape files (1-3 shapes) you may find turning compression
off result in the saving of a few bytes. The bigger the file, the larger the
saving.

| Shapes| Acids SaveShapes | LESaveShapes NO COMPRESSION | LESaveShapes WITH <

COMPRESSION |
I ______________________________________________________________________________________
| 400 | 76912 Dbytes | 68940 bytes 54091 bytes <
|
I ______________________________________________________________________________________
| 223 | 43008 Dbytes | 38576 bytes 35646 bytes <+

1.198 RIShapesLib: Command Index

Command index for library RIShapesLib

Library Main




RIBIitzLibs 75/103

Number of commands: 5

CludgeShapes
LECludgeShapes
LECompressShapes
LELoadShapes

LESaveShapes

1.199 RISortLib

Written By Stephen McNamara
©1996 Red When Excited Ltd

Introduction

This library allows you to sort a linked list of items. It works

only with linked lists, and at present can only sort items into alphabetical
order based on a string in the item.

The sorting routine used in this library is very simple and crude. This
library should not be used to sort in speed critical situations due to the
inefficiency of the sorting method. The library will, though, be fast
enough for most situations.

Command Index

1.200 RISortLib

Statement: StringSort

Modes : Amiga/Blitz
Syntax: StringSort linkedlist(),sizeof.typel,offset]

This is the basic sort command. Its first parameter is a linked list, the
second is the sizeof each item in this list (e.g. the size of they type or

newtype that each item is). The optional offset parameter allows you to
specify an offset into each item, this offset should be the offset for the
string you want to sort by. If the offset parameter is missing, an offset

of 0 will be assumed.




RIBIitzLibs

76 /103

This command sorts the whole of the linked list, starting from the very
first item.

Example:

Newtype.listitem
pad.w
text$

End Newtype

Dim List myitems.listitem(10)

AddItem myitems () : myitems () \text="Hello"
AddItem myitems () : myitems () \text="World"

;Sort list myitems (), string is offset 2 from start of type
StringSort myitems (), SizeOf.listitem, 2

ResetList myitems ()

While NextItem (myitems())
NPrint myitems () \text

Wend

MouseWait
End

1.201 RISortLib

Function: ListBase
Modes : Amiga/Blitz
Syntax: ad.l=ListBase(linkedlist())

This command returns the base address of the linked list supplied. This
address holds data for the linked list, and pointers to the first item and
current item in the list. This command will not be of any use to most
people, rather it is included for debugging purposes.

1.202 RISortLib

Statement: StringSortItem
Modes : Amiga/Blitz
Syntax: StringSortItem linkedlist(),sizeof.type[,offset]

This is basically the same command as StringSort except that this command
sorts the linked list from the xcurrentx list item rather than the first
list item. Thus it can be used to only sort a part of a list. Apart from
this the command is the same as StringSort.




RIBIitzLibs 777103

1.203 RISortLib

Statement: StringSortDir

Modes : Amiga/Blitz
Syntax: StringSortDir direction

Set the direction of sorting. A direction of zero causes strings to be

sorted into ascending order (smallest to largest), non-zero selects
descending order (largest to smallest).

1.204 RISortLib: Command Index

Command index for library RISortLib

Library Main
Number of commands: 4
ListBase
StringSort
StringSortDir

StringSortItem

1.205 RIToolTypesLib

Written By Stephen McNamara
©1996 Red When Excited Ltd

Introduction

This library contains commands to allow the reading, comparing and setting
of tooltypes in a .info file. All tooltype names are case insignificant
but as a general sort of rule they should really be completely uppercase.

This library attempts to open the system Icon.library, if the opening of

this library fails ALL commands in this library will be unusable. Almost
every function in this library relies on the Icon.library completely.

Command Index




RIBIitzLibs

78/103

1.206 RIToolTypesLib

Statement/Function: GetIconObject

Modes : Amiga

Syntax : GetIconObject filename$
suc.l=GetIconObject (filename$)

This command reads in a .info file from disk. The filename given will
have ’.info’ added to the end of it and will be loaded into memory (chip or
fast depending on what is available for allocation) as a diskobject.

Please refer to the Amiga hardware includes for information about the
diskobject structure (or see your Blitz Basic Amigalibs resident file).

If used as a function, this command will return either FALSE for failure
or the address of the allocated diskobject in memory.

1.207 RIToolTypesLib

Statement/Function: PutIconObject

Modes : Amiga

Syntax : PutIconObject filename$[, icontype]
suc.l=PutIconObject (filename$)

This command takes a diskobject structure reserved and initialised by
GetIconObject and saves it out to disk as a .info file for the specified
file. All current tooltypes and values will be saved with the file.

The optional parameter allows you to set the type of the file associated
with the .info file. See SetIconType for possible values for this
parameter. Note that if you leave out this parameter the icontype will not
be changed.

1.208 RIToolTypesLib

Statement/Function: FreeIconObject

Modes : Amiga

Syntax : FreelIconObject
suc.l=FreelIconObject

This command will free up the diskobject that is currently being used.
It will not save out any tooltype changes and will free up the memory
without ANY changes being made to the .info file loaded from disk.

All changes will be lost when you use this command!




RIBIitzLibs 79/103

1.209 RIToolTypesLib

Function: FindToolValue
Modes : Amiga
Syntax : toolval$=FindToolValue (tooltype$)

This function returns the value of the selected tooltype. The return
value is a string, and is the part of the tooltype string after the "=" in
the tooltype entry. The tooltype$ string that you pass can be in either
lower case or uppercase since all testing in done in uppercase, although as
a general rule, all tooltypes should be in uppercase.

This function will return a null string if the named tooltype was not
found in the list of tooltypes for the file. If the selected tooltype did
not have an actual value (e.g. DONOTWAIT) then this function will also
return a null string - you can though use a combination of this command and
FindToolType to cover this situation.

1.210 RIToolTypesLib

Function: FindToolNumber
Modes : Amiga
Syntax : toolval$=FindToolNumber (tooltype$)

This command will return the FULL tooltype string in the selected
tooltype position. If the tooltype number does not exist then "" will be
returned.

Example: tooltypes: "DONOTWAIT"
"CLOCKX=157"

FindToolNumber (0) will return "DONOTWAIT"
FindToolNumber (1) will return "CLOCKX"
FindToolNumber (49) will return ""

1.211 RIToolTypesLib

Function: MatchToolValue
Modes : Amiga
Syntax : suc.l=MatchToolValue (tooltype$,value$)

This command searchs the current list of tooltypes for the selected
tooltype and, if found, attempts to match the values of it with the given
value. This command uses the operating system call MatchToolType(), it
is able to cope with a tool having more than one value,

e.g. LANGUAGE=ENGLISH|FRENCH
(the | is used to show OR, thus this tooltype




RIBIitzLibs 80/103

means that LANGUAGE equals ENGLISH or FRECH)
When using match toolvalue with this tooltype, TRUE will be
returned when you use value$="ENGLISH" or "FRENCH" but not
(I think) both.

You should note that for this command, the case of VALUES is
insignificant.

1.212 RIToolTypesLib

Statement/Function: SetToolValue

Modes : Amiga

Syntax : SetToolValue tooltype$,value$
suc.l=SetToolValue (tooltype$,values$)

This command will attempt to set a tooltype that is currently defined to
the specified value. When used as a function, this command will return
TRUE for success or FALSE for failure, possible failures include: no icon
file loaded and tooltype not found. When used, this command attempts to
allocate memory to store the new tooltype information in, it does not
attempt to free up the old memory allocated to the tooltype. This means
that you should keep alterations of tooltypes to a minimum. The best way
to manage tooltypes is:

Open the icon
Read the tooltypes
Close the icon

do your program
Open the icon
Alter the tooltypes
Save the icon

N o U W N R

Using this series of events, you’ll keep memory usage (which will be
fairly small anyway...) to the very minimum.

1.213 RIToolTypesLib

Statement/Function: NewToolType

Modes : Amiga

Syntax : NewToolType tooltype$,value$
suc.l=NewToolType (tooltype$,values$)

This command allocates a new tooltype in the currently loaded .info file
and sets its value. No check is done to see is the tooltype already
exists and the new tooltype is added to the end of the current list of
tooltypes.




RIBIitzLibs

81/103

1.214 RIToolTypesLib

Statement: ClearToolTypes
Modes : Amiga
Syntax : ClearToolTypes

This command is used to clear all the tooltype information from the
currently loaded .info file. It does not attempt, though, to free up all
the memory reserved to store tooltype names and values, you should
therefore not used this command too many times in a row. Once you have
used this command, any attempt to read tooltype values will fail.

1.215 RIToolTypesLib

Statement: SetIconHit
Modes : Amiga
Syntax : SetIconHit width#,height#

This command sets the size of the "hit-box’ around the image in the
currently loaded .info file. This is only of use if your info file has an
image associated with it. You should note that the hit box should never be
smaller, horizontally or vertically, than the actual size of the image.

When Workbench renders an image for a file onto a window, it
automatically puts a 3d box border around it. The size of the hit box
determines the size of this border. Your image will always be located in
the top left border of the hit box.

1.216 RIToolTypesLib

Statement: ShapeTolcon
Modes : Amiga
Syntax : ShapeToIcon shape#[, shape#]

This command lets you change the images associated with the currently
loaded .info file. What it does is to set up the .info file in memory so
that when it is saved out next, the images you give are saved out with it.
Using this command does not actually copy any shape data around memory, all
it does it place a pointer in the .info to the shape data. You should
therefore not delete a shape WITHOUT first saving the .info file to disk
(that is of course if you want to keep your changes).

When you use this command, the hit box area for the .info file is
automatically set to the size of the first shape given. It is important,
therefore, that the second shape is not larger than the first. When you
give a second shape, this shape is set up to be the "alternate render’
image, this means that this is the second image associated with the .info
file (remember the two windows in the IconEditor?)




RIBIitzLibs 82/103

1.217 RIToolTypesLib

Statement: SetIconType
Modes : Amiga
Syntax : SetIconType type#

This command lets you specify the type of the file associated with the
currently loaded .info file. The type describes whether or not the file is
a tool or project etc...., and can take the following values:

Disk
Drawer
Tool
Project
Trashcan

g w N

This command is identical to the menu in the IconEditor ’Type’.

1.218 RIToolTypesLib

Statement: IconRender
Modes : Amiga
Syntax : IconRender mode#

This command lets you specify what Workbench should do to the icons
image when the user clicks on it. It lets you choose whether a separate
image should be displayed or whether the current image should just be
modified. Mode# is made up of several different values that should be
added together to create different effects, these are:

Complement the select box
Draw a box around the image
Draw the alternate image
Don’t highlight

Double image icon

Sw N RO

Thus if you wanted an icon to change to a second image when selected, and
the icon has a second image, you would set the render to 6 (4+2). This
would mean that you had a second image (4) and that you wanted it to be
displayed when you select the icon (2).

Note: when you use ShapeToIcon with two shape numbers the IconRender is
automatically set to 6.

1.219 RIToolTypesLib

Statement: IconDefaultTool




RIBIitzLibs 83/103

Syntax : IconDefaultTool tool$

This command lets you set the default tool for the current .info file.
The default tool only applies for project files (see SetIconType) and is
the program that is run when you double click the icon file (e.g. all
Blitz2 source code files saved out with icons have the default tool
"Blitz2:Blitz2’).

This command can be used to make a file saved out by your program

double-clickable. I have used it myself to make map files saved out from
my editor automatically load the editor when selected.

1.220 RIToolTypesLib

Statement: FindToolType

Modes : Amiga
Syntax : bool=FindToolType (tool$)

This command simply returns true or false to say whether or not the given
tooltype was found in the currently loaded .info file.

>>END

1.221 RIToolTypesLib: Command Index

Command index for library RIToolTypesLib

Library Main
Number of commands: 15

ClearToolTypes
FindToolNumber
FindToolType
FindToolValue
FreeIconObject
GetIconObject
IconDefaultTool
IconRender
MatchToolValue

NewToolType




RIBIitzLibs 84/103

PutIconObject
SetIconHit
SetIconType
SetToolValue

ShapeToIcon

1.222 RITrackDiskLib

Written By Steven Matty
©1996 Red When Excited Ltd

Command Index
Introduction

Low—ish-level library for trackloaders and the like. For example,
you can hide information on a disk track..not very useful nowadays,
but you never know...

1.223 RITrackDiskLib

Statement/Function : OpenDisk

Modes : Amiga
Syntax : success=0penDisk (unit#)

This attempts to open unit ’'unit#’ of the trackdisk.device, for use with

the other Statement/Functions in this library. A return value of 0 indicates <+
failure,

-1 indicates success.

1.224 RlITrackDiskLib

Statement : MotorOn




RIBIitzLibs 85/103

Syntax : MotorOn unit#
This attempts to switch the drive motor on of the previously opened

trackdisk unit (called with OpenDisk). You must call this Statement/Function
before attempting to ReadSector/WriteSector/FormatTrack/WriteBoot

1.225 RITrackDiskLib

Statement : MotorOff

Modes : Amiga
Syntax : MotorOff unit#

This turns the drive motor of ’‘unit#’ off.

1.226 RITrackDiskLib

Statement/Function : ReadSector
Modes : Amiga
Syntax : [success=]ReadSector (unit#, sector#,buffer[,numsectors])

This attempts to read ’'numsectors’ sectors from a trackdisk device which
has been opened with OpenDisk and has its Motor On. If numsectors is
omitted then 1 sector is read. The data is read into the memory location
pointed to by "buffer’.

WARNING! Please MAKE SURE the MOTOR is _ON_ otherwise, all hell will break
loose!!!

1.227 RlITrackDiskLib

Statement/Function : WriteSector

Modes : Amiga
Syntax : [success=]WriteSector (unit#, sector#,buffer[, numsectors])
This is the same as ReadSector except........... it writes!

(and no, I am not being lazy by not typing any decent docs)

1.228 RITrackDiskLib




RIBIitzLibs

86/103

Statement/Function : FormatTrack
Modes : Amiga
Syntax : [success=]FormatTrack (unit#, track#,buffer[,numtracks])

This does a TD_FORMAT on the specified track number. Buffer should point
to the area of memory which the track should be formatted with. I don’t
know why this Statement/Function exists — but hey, it might come in useful.

1.229 RITrackDiskLib

Statement/Function : WriteBoot
Modes : Amiga
Syntax : [success=]WriteBoot (unit#[,buffer])

This writes 1k of data to the bootblock of the specified disk unit.
The optional buffer parameter should point to an area of memory with which
to write the bootblock.

1.230 RITrackDiskLib

Statement : CloseDisk

Modes : Amiga
Syntax : CloseDisk unit#

This closes the trackdisk.device of the specified unit#. The Motor is
automatically switched off if it is already on.

1.231 RITrackDiskLib: Command Index

Command index for library RITrackDiskLib

Library Main
Number of commands: 8
CloseDisk
FormatTrack
MotorOff

MotorOn




RIBIitzLibs 87/103

OpenDisk
ReadSector
WriteBoot

WriteSector

1.232 RIZonedJoylLib

Joystick Routines Written By Steven Matty
Zone Routines Written By Stephen McNamara
©1996 Red When Excited Ltd

Introduction

This library contains commands for setting up zones and testing the status
of the joysticks attached to the Amiga.

New additions to this library allow you to have multiple lists of zones
(refered to as zonetables in this doc). To maintain compatibility with
older versions of the library, zonetable 0 is equivalent of the original
list of zones used in the library. You cannot adjust the size of zonetable
0 (its size is 256 zones), nor can you delete it. The new zonetables can
be from 1 to 65536 in size, there are 16 available zonetable numbers.

All commands that change or test zones will work on the last zonetable that
was selected with the command UseZoneTable. The default table is number 0.

Command Index

1.233 RIZonedJoyLib

Statement: Zonelnit

Modes : Amiga/Blitz
Syntax : ZonelInit [zone_num] | [start_zone,end_zone]
This command is used to clear any zones currently set. The optional

parameters allow you to select either a single zone or a range of zones
to reset.




RIBIitzLibs 88/103

1.234 RIZonedJoyLib

Statement/Function: Setzone

Modes : Amiga/Blitz

Syntax : Setzone zone#,x1,yl,radius
Setzone zone#,x1,yl,x2,y2

This command lets you set up zones for testing. The first version is
used when you want to set up a circular zone and the second when you want
a rectangular one. With rectangular zones, x1,yl should be the top left
corner of the rectangle and x2,y2 should be the bottom left.

If used as a function, this command returns TRUE or FALSE to say whether
or not the change was made.

Note: The max zone number for zonetable 0 is 255.
A zone number outside the range of the current table will
cause this command to abort.
Zones can be defined in any order.
Circular zones are used in exactly the same way as rectangular
ones.

1.235 RIZonedJoyLib

Function: Zone
Modes : Amiga/Blitz
Syntax : a.w=Zone(x,V)

This command takes the co-ordinates x,y and checks to see if they are
inside any of the defined zones. The zones are searched in order,
starting at 0 and going through to the size of the zonetable-1. This
command will return the first zone that the co-ordinates were found to
be inside, you should note that both types of zones are tested
(rectangular and circular).

This command returns either -1 for not inside a zone or the zone number.

1.236 RIZonedJoyLib

Function: ZoneTest
Modes : Amiga/Blitz
Syntax : a.w=ZoneTest (start_numl,end_num], x,vy)

This command is the same as the Zone command except that it allows you
to select either one individual zone to test or a range of zones. You
should, though, ensure that end_num if greater than start_num.




RIBIitzLibs 89/1083

This command returns either -1 for not inside a zone or the zone number.

1.237 RIZonedJoyLib

Function: ZoneTable
Modes : Amiga/Blitz
Syntax : ad.l=ZoneTable

This function returns the address in memory of the zone information
storage area for the current zonetable. The zones are stored one after
the other, with each zone taking up 8 words (16 bytes) in the data area,
making a total size of 2048 bytes. They are stored in the following way:

Rectangular: +0: x1
+2: vyl
+4: x2
+6: y2

Circular: +0: x1
+2: vyl
+4: radius of zone
+6: -1 <-— this is set to show that the
zone 1is circular.

Undefined zone: +0: -1

+2: -1
+4: -1
+6: -1

The first longword (4 bytes) of the zonetable is used to hold the size,
in zones, of the table (thus the true size of the zonetable is 4+number of
zonesx*8) .

1.238 RIZonedJoyLib

Function: ZoneTableSize

Modes : Amiga/Blitz
Syntax : size.l=ZoneTableSize
This function returns the size, in zones, of the current zonetable. It

is equivalent of doing: size.l=peek.l(ZoneTable).

1.239 RIZonedJoyLib




RIBIitzLibs 90/1083

Statement/Function: NewZoneTable
Modes : Amiga/Blitz
Syntax : NewZoneTable table#,size

This command will attempt to allocate a new zonetable with the given
table number. If the table already exists it will be deleted. The maximum
size for a zonetable is 65536 zones. If used as a function, this command
will return FALSE for failure or TRUE for success. You should note that
all zones are automatically reset in the new table and that creating a
table does not make it the current table, this must be done with
UseZoneTable.

Valid zonetable numbers range from 0 to 15.

IMPORTANT NOTE: you cannot define the size of zonetable 0. You cannot
use this command to alter it in any way.

1.240 RIZonedJoyLib

Statement /Function: UseZoneTable
Modes : Amiga/Blitz
Syntax : UseZoneTable table#

This command is used to change the current zonetable to the selected one.
If used as a function, it will return TRUE for success or FALSE for
failure.

Valid zonetable numbers range from 0 to 15.

1.241 RIZonedJoyLib

Statement/Function: FreeZoneTable

Modes : Amiga/Blitz
Syntax : FreeZoneTable table#

This command is used to free a zonetable from memory. If used as a
function, it will return TRUE or FALSE. When successfully called, this
command will free the zonetable and change the currently used zonetable to
table number 0.

Valid zonetable numbers range from 0 to 15.

IMPORTANT NOTE: you cannot free zone table 0.

1.242 RIZonedJoylLib




RIBIitzLibs

91/103

Function: JFire

Modes : Amiga/Blitz
Syntax : jf.b=JFire (joy#)

This command tests the fire button status of the joystick Jjoy#, where

joy# is between 1 and 4. You should note that, as with all the joystick

commmands, Jjoy#=1 refers to the Amiga’s joystick port, joy#=2 refers to
the mouse port, and Jjoy#=3 or joy#=4 refer to the four player adapter
ports.

This command returns 0 for fire button not pressed or -1 for pressed

1.243 RIZonedJoyLib

Function: JHoriz

Modes : Amiga/Blitz
Syntax : Jjh.b=JHoriz (joy#)

This command is used to test the horizontal direction of the selected
joystick. It returns:

0: No horizontal direction
-1: Joystick left
1: Joystick right

1.244 RIZonedJoyLib

Function: JVert

Modes : Amiga/Blitz
Syntax : Jjv.b=JVert (jov#)

This command is used to test the vertical direction of the selected
joystick. It returns:

0: No vertical direction
—-1: Joystick up
1: Joystick down

1.245 RIZonedJoyLib

Function: AllFire

Modes : Amiga/Blitz




RIBIitzLibs

92/103

Syntax : af.b=AllFire [ (bit_pattern)]

This command is used to test the fire button status of all four
joysticks. It returns a byte with the first four bits giving the
joystick status, false=fire button not pressed, true=fire button presse
The following bits belong to joysticks:

bit 0: joystick 1 (joystick port)

bit 1: joystick 2 (mouse port)

bit 2: joystick 3 (four player adaptor)
bit 3: joystick 4 (four player adaptor)

d.

The optional bit pattern can be used to restrict the testing of the fire

buttons. If a bit in the pattern is clear (false) then the joystick it
belongs to will not have its fire button tested,

e.g. AllFire (%0011) will test joysticks 1 and 2 and return the
result. It will return false for joysticks 3 and 4.

1.246 RIZonedJoyLib

Statement/Function: JAdaptorStatus

Modes : Amiga/Blitz

Syntax : JAdaptorStatus On/Off
oldstatus=JAdaptorStatus (On/0Off)

This command toggles the reading of the four player adaptor for the
following commands:

AllFire
Jvert
JHoriz
JFire

When the status is off, these commands will return 0 when you attempt to
read from joysticks 3 and 4. When on the testing will be performed
normally. Default status for the adaptor is on.

1.247 RIZonedJoylLib

Function: GetZoneX1l
Modes : Amiga/Blitz
Syntax : xl=GetZoneXl (zone#)

This command returns the x start position for the specified zone in the
currently used zone table. If the zone number supplied goes outside the
size of the zonetable, then this command returns -1. It also returns -1
the zone is undefined.

if




RIBIitzLibs 93/1083

1.248 RIZonedJoyLib

Function: GetZoneYl

Modes : Amiga/Blitz
Syntax : yl=GetZoneYl (zone#)

This command returns the y start position for the specified zone in the
currently used zone table. If the zone number supplied goes outside the
size of the zonetable, then this command returns -1. It also returns -1 if
the zone is undefined.

1.249 RIZonedJoylLib

Function: GetZoneX2

Modes : Amiga/Blitz
Syntax : x2=GetZoneX2 (zone#)

This command returns the x end position for the specified zone in the
currently used zone table. If the zone number supplied goes outside the
size of the zonetable, then this command returns -1. It also returns -1 if
the zone is undefined.

Note: For circular zones, this command will return the radius of the circle
squared.

1.250 RIZonedJoyLib

Function: GetZoneY2

Modes : Amiga/Blitz
Syntax : y2=GetZoneY2 (zone#)

This command returns the y end position for the specified zone in the
currently used zone table. TIf the zone number supplied goes outside the
size of the zonetable, then this command returns -1. It also returns -1 if

the zone is undefined.

Note: For circular zones this command will always return -1

Version details:




RIBIitzLibs

94/103

27/1/95
- V1.5
- Fixed comparison prob in both ’circular:, changed BPL into
BGE.
- Fixed _zonetest000 - was getting x1,y,x2,y2 in wrong order
- Fixed _zonetest020 circular zones - same prob as above
— Added:
GetZoneX1/X2/Y1/Y2 for zone interrogating...
25/1/95
— Added JAdaptorStatus for disabling/enabling player
3 & 4 joystick reading. If disabled, commands will return

0 for these joysticks.
— Added fourplayer checking to AllFire.

23/11/94
- BIG bug in ZoneInit2 - was moving #0 into (al) instead
of (a0)
3/9/94

— Added 020 specific zone testing

— Added commands ZoneMode and SetZoneMode (for 020 support)

— Speed increase on Jfire: replaced branches and movegs with
SEQ

— Improved jvert and jhoriz to remove inefficiency

>>END

1.251 RIZonedJoyLib: Command Index

Command index for library RIZoneJoyLib

Library Main
Number of commands: 18

AllFire
FreeZoneTable
GetZoneXl1l
GetZoneX2
GetZoneYl
GetZoneY2
JAdaptorStatus
JFire
JHoriz
JVert

NewZoneTable




RIBIitzLibs 95/1083

Setzone
UseZoneTable
Zone

Zonelnit
ZoneTable
ZoneTableSize

ZoneTest

1.252 Library Index

Libraries included in database: 17

Total number of commands: 208

RIAmosFuncLib
RIAnimLib
RIAppLib
RICommoditiesLib
RICompactDisklib
RICopperFXLib
RIEncryptLib
RIFNSLib

RIFxLib

RIGEfxLib
RILESDebugLib
RIPackLib
RIShapesLib
RISortLib
RIToolTypesLib
RITrackDiskLib

RIZoneJoyLib




RIBIitzLibs 96/103

Full Command List

1.253 Full Command List

Full Command List
AddAppIcon
AddAppMenu
AddAppWindow
ADDValue
AddVarTrace
AGAFillPalette
AGAPalBlue
AGAPalGreen
AGAPalRed
AllFire
AnimLoop
AppEvent
AppEventCode
AppEventID
AppFile
AppNumFiles
BlitterDone
BlitterNasty
BLoad
BSave
CDDoor
CDFastForward

CDFirstTrack




RIBIitzLibs

97/103

CDFlush
CDLastTrack
CDNormalSpeed
CDNumTracks
CDPause
CDhPlayTrack
CDReadTOC
CDRewind
CDSpeed
CDStatus
CDStop
CDTrackLength
CDTrackMins
CDTrackPlaying
CDTrackSecs
CDUpdateInfo
CDVolume
ChunkHeader
ClearBitmap
ClearToolTypes
CloseCD
CloseDisk
CludgeShapes
CludgeShapes
CludgeSound
CommodityEvent
CopperAGACol
CopperCommand

CopperEnd




RIBIitzLibs

98/103

CopperInfoBlock

CopperMove
CopperReset
CopperSkip
CopperTrace
CopperWait
CopyByte
CopyColour
CopyLong
CopyWord
CPUCls
CxAppear
CxChangeList
CxDisable
CxDisAppear
CxEnable
CxKill
CxUnique
Decrypt
Delce
DelAppIcon
DelAppMenu
DelAppWindow
DelVarTrace
Derez
DeviceName$
DisAsmWindow

DoColSplit




RIBIitzLibs

99/1083

Encrypt

Erase

EraseAll
ExchangeAppear
ExchangeChangeList
ExchangeDisable
ExchangeDisAppear
ExchangeEnable
ExchangeKill
ExchangeMessage
ExchangeUnique
FadeInBitmap
FileSize
FillMem
FillPalette
FindToolNumber
FindToolType
FindToolValue
FindVolume
FNSClip
FNSClipOutput
FNSHeight
FNSInk
FNSLength
FNSLoad
FNSOrigin
FNSOutput
FNSPrefs

FNSPrint




RIBIitzLibs

100/103

FNSSetTab
FNSSlot
FNSUnderline
FNSUnLoad
FNSVersion
FNSWidth
FormatTrack
FreeIconObject
FreeZoneTable
FuncLibVersion
GetCCOffset
GetIconObject
GetWheel
GetZoneX1l
GetZoneX2
GetZoneYl
GetZoneY2
HotKeyHit
IconDefaultTool
IconRender
ILBMGrab
ILBMPalette
InitZoomXY
InstallFNS
JAdaptorStatus
JFire

JHoriz

JVert




RIBIitzLibs 101/103

KeyCode
LECludgeShapes
LECompressShapes
LELoadShapes
Length
LESaveShapes
Lisa

ListBase
LoadIFF
MakeCommodity
MakeDir
MatchToolValue
Max/Min
MemF'ree
MotorOff
MotorOn
NewToolType
NewZoneTable
NextAppFile
NextBank
OpenCD
OpenDisk
PalAdjust
PalBlue
PalettelInfo
PalGreen
PalRed

PLoad

ProcControl




RIBIitzLibs 102/103

PutIconObject
ReadSector
Reboot
RedoColSplit
ReduceX?2
RemoveFNS
Rename

Reserve
ResetTimer
RIAnimFrameCount
RIAnimInit
RINextAnimFrame
SaveCMAP
SetCxStatus
SetHotKey
SetIconHit
SetIconType
SetToolValue
Setzone
ShapeToIcon
Start
StringSort
StringSortDir
StringSortItem
This function no longer returns the number of files
Timer

UnpackIFF

UseZoneTable




RIBIitzLibs 103/103

VarTraceWindow

WaitBlitter

WriteBoot

WriteSector

XOR

zone

Zonelnit

zZzoneTable

ZoneTableSize

ZoneTest

ZoomX2

ZoomX4

ZoomX8

ZoomXY




	RIBlitzLibs
	Look Out, Its The...
	Welcome..
	What do I need?
	A New Force In Software...
	This would not have been possible without....
	Lots of loverly commands..
	Who can copy it?
	Who ya gonna call?
	But first...
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib
	RIAmosFuncLib: Command Index
	RIAnimLib
	RIAnimLib
	RIAnimLib
	RIAnimLib
	RIAnimLib
	RIAnimLib: Command Index
	RIAppLib
	RIAppLib
	function
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib
	RIAppLib: Command Index
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib
	RICommoditiesLib: Command Index
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib
	RICompactDisklib: Command Index
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib
	RICopperFXLib: Command Index
	RIEncryptLib
	RIEncryptLib
	RIEncryptLib
	RIEncryptLib
	RIEncryptLib: Command Index
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib
	RIFNSLib: Command Index
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib
	RIFxLib: Command Index
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib
	RIGfxLib: Command Index
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib
	RILESDebugLib: Command Index
	RIPackLib
	RIPackLib
	RIPackLib
	RIPackLib
	RIPackLib
	RIPackLib
	RIPackLib
	RIPackLib: Command Index
	RIShapesLib
	RIShapesLib
	RIShapesLib
	RIShapesLib
	RIShapesLib
	RIShapesLib
	RIShapesLib: Command Index
	RISortLib
	RISortLib
	RISortLib
	RISortLib
	RISortLib
	RISortLib: Command Index
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib
	RIToolTypesLib: Command Index
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib
	RITrackDiskLib: Command Index
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib
	RIZoneJoyLib: Command Index
	Library Index
	Full Command List


